
Copyright © 2007 by the Spirit Consortium.
1370 Trancas Street #16Napa, CA 94558
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IP-XACT Standard. As such, this document is
subject to change. USE AT YOUR OWN RISK!

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2012 by Accellera Systems Initiative Inc.
1370 Trancas Street #163, Napa, CA 94558
All rights reserved.

SystemRDL v1.0; March 24, 2009

SystemRDL v1.0: A specification for a
Register Description Language

Prepared by the

Register Description Working Group
of
The SPIRIT Consortium

Costco
Typewritten Text
PLEASE NOTE: This version 1.0 of the SystemRDL 1.0 specification is the version as originally published by The SPIRIT Consortium Inc., which was merged into Accellera in 2010. Accellera Systems Initiative currently holds the copyright to and ownership of this specification. Links contained in this document may point to the old SPIRIT Consortium site and may no longer be valid. For more information please send email to info@accellera.org.

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

Costco
Typewritten Text

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2007 - 2008 by the SPIRIT Consortium.
All rights reserved. Published xx month 2008. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2007-2009 by the SPIRIT Consortium.
All rights reserved. Published 24 March 2009. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Abstract: Information about the registers in a circuit design is required throughout its lifetime, from
initial architectural specification, through creation of an HDL description, verification of the design,
post-silicon testing, to deployment of the circuit. A consistent and accurate description of the regis-
ters is necessary so the registers specified by the architects and the registers programmed by the
users of the final product are the same. SystemRDL is a language for describing registers in circuit
designs. SystemRDL descriptions are used as inputs to software tools that generate circuit logic,
test programs, printed documentation, and other register artifacts. Generating all of these from a
single source ensures their consistency and accuracy. The description of a register may correspond
to a register in an preexisting circuit design, or it can serve as an input to a synthesis tool that cre-
ates the register logic and access interfaces. A description captures the behavior of the individual
registers, the organization of the registers into register files, and the allocation of addresses to reg-
isters. A variety of register behaviors can be described: simple storage elements, storage elements
with special read/write behavior (e.g., ‘write 1 to clear’), interrupts, and counters.
Keywords: hardware design, electronic design automation, SystemRDL, hierarchical register de-
scription, control and status registers, interrupt registers, counter registers, register synthesis, soft-
ware generation, documentation generation, bus interface, memory, register addressing.

Copyright (c) 2007-2009 The SPIRIT Consortium. All rights reserved.
www.spiritconsortium.org

THIS WORK FORMS PART OF A SPIRIT CONSORTIUM SPECIFICATION.
USE OF THESE MATERIALS ARE GOVERNED BY
THE LEGAL TERMS AND CONDITIONS OUTLINED IN THE SPIRIT
SPECIFICATION DISCLAIMER AVAILABLE FROM
www.spiritconsortium.org

This document is provided on an AS IS basis. The SPIRIT Consortium disclaims
ANY WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF
MERCHANTABILITY AND FITNESS FOR USE FOR A PARTICULAR PURPOSE.
The user of the source file shall indemnify and hold The SPIRIT Consortium and its members
harmless from any damages or liability arising out of the use thereof or the performance or
implementation or partial implementation of the schema or any other reason.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Introduction

The SystemRDL language was specifically designed to describe and implement a wide variety of registers
and memories. Using SystemRDL, developers can automatically generate and synchronize the register
specification in hardware design, software development, verification, and documentation. The intent behind
standardizing the language is to drastically reduce the development cycle for hardware designers, hardware
verification engineers, software developers, and documentation developers.

SystemRDL is intended for
— RTL generation
— RTL verification
— SystemC generation
— Documentation
— Pass through material for other tools, e.g., debuggers
— Software development

The SPIRIT Consortium is a consortium of electronic system, IP provider, semiconductor, and EDA
companies. Other supporting documents (with comments and examples) are available from the public area
of the http://www.spiritconsortium.org web site.

Notice to users

Errata

Errata, if any, for this and all other standards of The SPIRIT Consortium can be accessed at the following
URL: http://www.spiritconsortium.org/releases/errata/. Users are encouraged to check this URL for errata
periodically.

Interpretations

Current interpretations, users guides, examples, etc. can be accessed at the following URL:
http://www.spiritconsortium.org/tech/docs/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. iii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. iii

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Participants

The following members and observers took part in the Register Description Working Group (RDWG):

Will Adams, Freescale Semiconductor, Chair RDWG

Gary Delp, LSI, Technical Director

Joe Daniels, Technical Editor

ARM: Anthony Berent

Cadence: Jean-Michel Fernandez

Cisco Systems: Michael Faust

Denali Software: Joe Bauer, Mark Gogolewski, Gary Lippert, Sean Smith

Duolog: Edwin Dankert

Freescale Semiconductor: Will Adams, Karl Heubaum, Seth Park, Kathy Werner

LSI: Gary Delp, Dave Fechser, Gary Lippert

MIPS Technologies: Michael Uhler

NXP Semiconductors: Greg Ehmann, Jan Stuyt

Semifore: Richard Weber

ST Microelectronics: Christophe Amerijckx, Guillaume Cernier, Serge DePaoli

Special acknowledgment is given to:

Denali: Contribution of initial specification upon which the work is based

The Board of Directors of The SPIRIT Consortium active during the release of the SystemRDL Standard:

Ralph vonVignau, NXP, President

Gary Delp, LSI, Vice-President

Lynn Horobin, Executive Secretary

Richard Drylie, John Goodenough, ARM

 Stan Krolikoski, Cadence

 Luke Smithwick, Kathy Werner, Freescale Semiconductor

Ben Arthur, Bill Chown, Mentor Graphics

 Bart de Loore, NXP Semiconductors

 Serge Hustin, ST Microelectronics

 Pierre Bricaud, Synopsys

 Loic Le-Toumelin, Texas Instruments
iv Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

iv Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Contents

1. Overview.. 1

1.1 Scope .. 1
1.2 Purpose ... 1
1.3 Motivation .. 2
1.4 Conventions used ... 2

1.4.1 Visual cues (meta-syntax) ... 2
1.4.2 Notational conventions ... 2
1.4.3 Examples ... 2

1.5 Use of color in this standard... 3
1.6 Contents of this standard .. 3

2. References.. 5

3. Definitions, acronyms, and abbreviations.. 7

3.1 Definitions.. 7
3.2 Acronyms and abbreviations.. 7

4. Lexical conventions ... 9

4.1 White space .. 9
4.2 Comments... 9
4.3 Identifiers ... 9
4.4 Keywords ... 10
4.5 Strings... 10
4.6 Numbers ... 11

5. General concepts, rules, and properties ... 13

5.1 Key concepts and general rules .. 13
5.1.1 Defining components .. 13
5.1.2 Instantiating components .. 14
5.1.3 Specifying component properties ... 14
5.1.4 Scoping ... 17

5.2 General component properties ... 18
5.2.1 Universal properties .. 18
5.2.2 Structural properties .. 19

6. Signals.. 21

6.1 Introduction .. 21
6.2 Signal properties... 21

6.2.1 Semantics .. 21
6.2.2 Example .. 21

6.3 Signal definition and instantiation.. 22
6.3.1 Semantics .. 22
6.3.2 Example .. 22

7. Field component .. 23
Copyright © 2007 The SPIRIT Consortium. All rights reserved. v
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. v

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
7.1 Introduction .. 23
7.2 Defining and instantiating fields .. 23
7.3 Using scalar and array field instances .. 23
7.4 Field access properties ... 24

7.4.1 Semantics .. 25
7.4.2 Example .. 25

7.5 Hardware signal properties... 25
7.5.1 Semantics .. 26
7.5.2 Example .. 26

7.6 Software access properties ... 27
7.6.1 Semantics .. 27
7.6.2 Examples ... 28

7.7 Hardware access properties .. 28
7.7.1 Semantics .. 29
7.7.2 Example .. 30

7.8 Counter properties .. 30
7.8.1 Counter incrementing and decrementing .. 30
7.8.2 Counter saturation and threshold .. 31

7.9 Interrupt properties... 34
7.9.1 Semantics .. 37
7.9.2 Example .. 37

7.10 Miscellaneous field properties ... 38
7.10.1 Semantics .. 38
7.10.2 Example .. 38

8. Register component ... 39

8.1 Defining and instantiating registers.. 39
8.1.1 Semantics for all registers ... 39

8.2 Instantiating internal registers .. 39
8.2.1 Semantics .. 39
8.2.2 Example .. 40

8.3 Instantiating external registers ... 40
8.3.1 Semantics .. 40
8.3.2 Example .. 41

8.4 Instantiating alias registers ... 41
8.4.1 Semantics .. 41
8.4.2 Example .. 42

8.5 Register properties.. 42
8.5.1 Semantics .. 42
8.5.2 Example .. 43

8.6 Understanding field ordering in registers... 43
8.6.1 Semantics .. 43
8.6.2 Examples ... 44

8.7 Understanding interrupt registers ... 44
8.7.1 Semantics .. 44
8.7.2 Example .. 44

9. Register file component ... 45

9.1 Defining and instantiating register files ... 45
9.1.1 Semantics .. 46
9.1.2 Examples ... 46

9.2 Register file properties ... 47
vi Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

vi Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
9.2.1 Semantics .. 47
9.2.2 Example .. 47

10. Address map component.. 49

10.1 Introduction .. 49
10.2 Defining and instantiating address maps.. 49

10.2.1 Semantics .. 49
10.2.2 Example .. 49

10.3 Address map properties .. 49
10.3.1 Semantics .. 51
10.3.2 Example .. 52

10.4 Defining bridges or multiple view address maps ... 52
10.4.1 Semantics .. 52
10.4.2 Example .. 52

11. User-defined properties.. 55

11.1 Defining user-defined properties.. 55
11.1.1 Semantics .. 55
11.1.2 Example .. 56

11.2 Assigning (and binding) user-defined properties ... 56
11.2.1 Semantics .. 56
11.2.2 Example .. 56

12. Enumeration (bit-field encoding)... 57

12.1 Introduction .. 57
12.2 Defining enumerations ... 57

13. Preprocessor directives .. 59

13.1 Embedded Perl preprocessing .. 59
13.1.1 Semantics .. 59
13.1.2 Example .. 59

13.2 Verilog-style preprocessor ... 59
13.2.1 Verilog-style preprocessor directives ... 60
13.2.2 Limitations on nested file inclusion .. 60

14. Advanced topics in SystemRDL.. 61

14.1 Application of signals for reset .. 61
14.2 Understanding hierarchical interrupts in SystemRDL ... 63

14.2.1 Example structure and perspective ... 64
14.2.2 Code snippet 1 .. 65
14.2.3 Code snippet 2 .. 65
14.2.4 Code snippet 3 .. 66
14.2.5 Code snippet 4 .. 66
14.2.6 Code snippet 5 .. 67
14.2.7 Code snippet 6 .. 68
14.2.8 Code snippet 7 .. 68
14.2.9 Code snippet 8 .. 69
14.2.10 Code snippet 9 .. 70
14.2.11 Code snippet 10 .. 71
Copyright © 2007 The SPIRIT Consortium. All rights reserved. vii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. vii

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
14.2.12 Code snippet 11 .. 72
14.3 Understanding bit ordering and byte ordering in SystemRDL .. 72

14.3.1 Bit ordering ... 73
14.3.2 Byte ordering .. 74

Annex A (informative) Bibliography .. 75

Annex B (normative) Grammar .. 77

Annex C (informative) Code example .. 91

Annex D (informative) Formatting text strings ... 95

Annex E (informative) Component-property relationships .. 99
viii Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

viii Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009SystemRDL v1.0 March 24, 2009
SystemRDL v1.0: A specification for a
Register Description Language

1. Overview

This clause explains the scope and purpose of this standard, describes the key features, details the
conventions used, and summarizes its contents.

The grammar of SystemRDL is specified by the ANTLR1 form of grammar specification (highlighted in
Annex B). The rest of this Standard is intended to be consistent with the ANTLR grammar. If any
discrepancies between the two occur, the ANTLR grammar shall take precedence.

1.1 Scope

SystemRDL is a language for the design and delivery of intellectual property (IP) products used in designs.
SystemRDL semantics supports the entire life-cycle of registers from specification, model generation, and
design verification to maintenance and documentation. Registers are not just limited to traditional
configuration registers, but can also refer to register arrays and memories.

The intent of this standard is to define SystemRDL accurately. Its primary audience are implementers of
tools supporting the language and users of the language. The focus is on defining the valid language
constructs, their meanings and implications for the hardware and software that is specified or configured,
how compliant tools are required to behave, and how to use the language.

1.2 Purpose

SystemRDL is designed to increase productivity, quality, and reuse during the design and development of
complex digital systems. It can be used to share IP within and between groups, companies, and consortiums.
This is accomplished by specifying a single source for the register description from which all views can be
automatically generated, which ensures consistency between multiple views. A view is any output generated
from the SystemRDL description, e.g., RTL code or documentation.

1Information on references can be found in Clause 2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 1
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 1

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
1.3 Motivation

SystemRDL was created to minimize problems encountered in describing and managing registers. Typically
in a traditional environment the system architect or hardware designer creates a functional specification of
the registers in a design. This functional specification is most often text and lacks any formal syntactic or
semantic rules. This specification is then used by other members of the team including software, hardware,
and design verification. Each of these parties uses the specification to create representations of the data in
the languages which they use in their aspect of the chip development process. These languages typically
include Verilog, VHDL, C, C++, Vera, e, and SystemVerilog. Once the engineering team has an
implementation in a HDL and some structures for design verification, then design verification and software
development can begin.

During these verification and validation processes, bugs are often encountered which require the original
register specification to change. When these changes occur, all the downstream views of this data have to be
updated accordingly. This process is typically repeated numerous times during chip development. In
addition to the normal debug cycle, there are two additional aspects that can cause changes to the register
specification. First, marketing requirements can change, which require changes to a register’s specification.
Second, physical aspects, such as area and timing constraints can drive changes to the register’s
specification. There are clearly a number of challenges with this approach:

a) The same information is being replicated in many locations by many individuals.

b) Propagating the changes to downstream customers is tedious, time-consuming, and error-prone.

c) Documentation updates are often postponed until late in the development cycle due to pressures to
complete other more critical engineering items at hand.

These challenges often result in a low-quality product and wasted time due to having incompatible register
views. SystemRDL was designed to eliminate these problems by defining a rich language that can formally
describe register specifications. Through application of SystemRDL and a SystemRDL compiler, users can
save time and eliminate errors by using a single source of specification and automatically generating any
needed downstream views.

1.4 Conventions used

The conventions used throughout the document are included here.

1.4.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

1.4.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.

1.4.3 Examples

Any examples shown in this Standard are for information only and are only intended to illustrate the use of
SystemRDL.
2 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

2 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
1.5 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not effect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.6 Contents of this standard

The organization of the remainder of this standard is as follows:

Table 1—Document conventions

Visual cue Represents

courier The courier font indicates SystemRDL or HDL code. For example, the following line
indicates SystemRDL code:

field myField {}; // defines a field type named “myField”

bold The bold font is used to indicate key terms, text that shall be typed exactly as it appears.
For example, in the following property definition, the keyword “default” and special char-
acter “:” (and optionally “=”) shall be typed as they appear:

default property_name [= value];

italic The italic font represents user-defined variables. For example, a property name needs to be
specified in the following line (after the “default” key term):

default property_name [= value];

[] square brackets Square brackets indicate optional parameters. For example, the value assignment is
optional in the following line:

default property_name [= value];

{ } curly braces Curly braces ({ }) indicate a parameter list, which usually can be repeated. For example,
the following shows one or more universal properties can be specified for this command:

mnemonic_name = value [{{universal_property;}*}];

{ } bold curly braces Bold curly braces are required. For example, in the following property definition, the bold
(outer) curly braces need to be typed as they appear:

mnemonic_name = value [{{universal_property;}*}];

* asterisk An asterisk (*) signifies that parameter can be repeated. For example, the following line
means multiple properties can be specified for this command:

field {[property;]*} name = unsizedNumeric;

< > angle brackets Angle brackets (< >) indicates a grouping, usually of alternative parameters. For example,
the following line shows the “in” or “out” key terms are possible values for the
“-direction” parameter:

-direction <in | out>

| separator bar The separator bar (|) character indicates alternative choices. For example, the following
line shows the “in” or “out” key terms are possible values for the “-direction” parameter:

-direction <in | out>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 3
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 3

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
— Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

— Clause 4 defines the lexical conventions used in SystemRDL.
— Clause 5 highlights the general concepts, rules, and properties in SystemRDL.
— Clause 6 describes how signals are used in SystemRDL.
— Clause 7 defines the field components.
— Clause 8 defines the register components.
— Clause 9 defines the register file components.
— Clause 10 defines the address map components.
— Clause 11 defines the user-defined properties.
— Clause 12 defines how to enumerate bit-field encoding.
— Clause 13 defines the preprocessor directives.
— Clause 14 describes advanced uses of SystemRDL.
— Annexes. Following Clause 14 are a series of annexes.
4 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

4 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.2, 3

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.

The ANTLR Parser Generator Reference Manual, Version 2 is available from The SPIRIT Consortium web
site: http://www.spiritconsortium.org/releases/systemRDL/1.0/antlr.txt.

The Apache ASP Embedding Syntax is available from the Apache web site:
http://www.apache-asp.org/syntax.html.

The HTML 4.01 standard syntax is available from the W3 web site:
http://www.w3.org/TR/html401/.

The phpBB code syntax is available from the phpBB web site:
http://www.phpbb.com/community/faq.php?mode=bbcode#f0r0.

The Perl programming language, Version 5, is available from the Perl web site:
http://www.perl.org/.

The Unicode Standard, Version 5.1.0, is available from The Unicode Consortium web site:
http://www.unicode.org/versions/Unicode5.1.0/.

2The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
3IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 5
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 5

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
6 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

6 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]4 should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 component: A basic building block in SystemRDL that acts as a container for information. Similar to
a struct or class in programming languages.

3.1.2 property: A characteristic, attribute, or a trait of a component in SystemRDL.

3.1.3 field: The most basic component object. Fields serve as an abstraction of hardware storage elements.

3.1.4 register: A set of one or more fields which are accessible by software at a particular address.

3.1.5 register file: A grouping of registers and other register files. Register files can be organized hierarchi-
cally.

3.1.6 address map: Defines the organization of the registers, register files, and address maps into a soft-
ware addressable space. Address maps can be organized hierarchically.

3.1.7 signal: A wire used for interconnect or to define additional component inputs and/or outputs.

3.1.8 enumeration: An alias of text bound to some bit value or a list of values to describe bit field encoding.

3.1.9 byte order: The ordering of the bytes from left to right or right to left or from most significant byte to
least significant byte or least significant byte to most significant byte. This is often referred to as endianness.
See also Clause 14.

3.1.10 bit order: The ordering of the bits from left to right or right to left or from most significant bit to least
significant bit or least significant bit to most significant bit. See also Clause 14.

3.1.11 RDLFormatCode: A set of formatting tags which can be used on text strings.

3.2 Acronyms and abbreviations

HDL hardware description language

HTML hypertext markup language

IP intellectual property

LSB least significant bit

MSB most significant bit

RTL register transfer level

SGML standard generalized markup language

4The number in brackets correspond to those of the bibliography in Annex A.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 7
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 7

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
8 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

8 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
4. Lexical conventions

This clause describes SystemRDL in terms of lexical conventions. SystemRDL source code is comprised of
a stream of lexical tokens consisting of one or more characters. SystemRDL compilers should support the
UTF-8 character encoding for broad worldwide compatibility. SystemRDL is case-sensitive. Only ASCII
characters are used for identifiers in SystemRDL. The support for UTF-8 is limited to strings to allow for
non-Engligh documentation. SystemRDL compilers shall ignore the byte-order mark.

4.1 White space

White space characters are: space, tab, line feed, and carriage return. All white space characters are
syntactically insignificant, except in the following cases.

a) Strings—Any number of consecutive white space characters is treated as a single space for purposes
of generating documentation. See 4.5.

b) Single-line comments—A new-line character (line feed, carriage return, or line feed plus carriage
return) terminates a single-line comment. See 4.2.

c) Where more than one token is being used and spacing is required to separate the tokens.

4.2 Comments

There are two types of comments in SystemRDL: single-line comments and block comments. Single-line
comments begin with // and are terminated by a new-line character. Block comments begin with /* and are
terminated by the next */. Block comments may span any number of lines; they shall not be nested. Within a
block comment, a single-line comment (//) has no significance.

Examples

// single line comment
/*
Block
comment

// This is part of this Block comment
*/

4.3 Identifiers

An identifier assigns a name to a user-defined data type or its instance. There are two types of identifiers:
simple and escaped. Identifiers are case-sensitive. Simple identifiers have a first character that is a letter or
underscore (_) followed by zero or more letters, digits, and underscores. Escaped identifiers begin with \ and
contain one or more letters, digits, or symbols and are terminated by whitespace. Escaped identifiers shall be
limited to SystemRDL keywords only. See Table 2.

Examples

my_identifier
My_IdEnTiFiEr
x
_y0123
_3
\field // This is escaped because it uses a keyword
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 9
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 9

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
4.4 Keywords

Keywords are predefined, non-escaped identifiers that define language constructs. Keywords cannot be used
as identifiers. Escaped keywords are treated as identifiers in SystemRDL. The keywords are listed in
Table 2.

4.5 Strings

A string is a sequence of characters enclosed by double quotes. The escape sequence \” can be used to
include a double quote within a string. To maintain consistency between all generated documentation
formats, one or more consecutive white space characters within a string shall be converted to a single space
for purposes of documentation generation. SystemRDL also has a set of formatting tags which can be used
on text strings, see Annex D.

Examples

“This is a string”
“This is also
a string!”
“This third string contains a \”double quote\““

Table 2—SystemRDL keywords

accesswidth activehigh activelow addressing addrmap

alias alignment all anded arbiter

async bigendian bothedge bridge clock

compact counter cpuif_reset decr decrsaturate

decrthreshold decrvalue decrwidth default desc

dontcompare donttest enable encode enum

errextbus external false field field_reset

fieldwidth fullalign halt haltenable haltmask

hw hwclr hwenable hwmask hwset

incr incrvalue incrwidth internal intr

level littleendian lsb0 mask msb0

na name negedge next nonsticky

ored overflow posedge precedence property

r rclr reg regalign regfile

regwidth reset resetsignal rset rsvdset

rsvdsetX rw saturate shared sharedextbus

signal signalwidth singlepulse sticky stickybit

sw swacc swmod swwe swwel

sync threshold true underflow w

we wel woclr woset wr

xored
10 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
4.6 Numbers

There are several number formats in SystemRDL. All numbers in SystemRDL are unsigned.
a) Simple decimal: A sequence of decimal digits 0, ..., 9.
b) Simple hexadecimal: 0x (or 0X) followed by a sequence of decimal digits or characters a through f

(upper- or lower-case).
c) Verilog-style decimal: Begins with a width specifying the number of binary bits (a positive decimal

number) followed by a single quote ('), followed by a d or D for decimal, and then the number itself,
represented as a sequence of digits 0 through 9.

d) Verilog-style hexadecimal: Begins with a width specifying the number of binary bits (a positive
decimal number) followed by a single quote ('), followed by an h or H for hexadecimal), and then
the number itself, represented as a sequence of digits 0 through 9 or characters a through f (upper- or
lower-case).

e) Verilog-style binary: Begins with a width specifying the number of binary bits (a positive decimal
number) followed by a single quote ('), followed by a b or B for binary, and then the number itself,
represented as a sequence of the digits 0 and 1.

The numeric portion of any number may contain multiple underscores (_) at any position, except the width
and first position, which are ignored in the computation of the associated numeric value. Additionally the
width of a Verilog number needs to be specified. Ambiguous width Verilog-style numbers, e.g., ’hFF, are
not supported.

It shall be an error if the value of a Verilog-style number does not fit within the specified bit-width.

Examples

40 // Simple decimal example
0x45 // Simple hexadecimal example
4’d1 // Verilog style decimal example (4 bits)
3’b101 // Verilog style binary example (3 bits)
32’hDE_AD_BE_EF // Verilog style with _’s
32’hdeadbeef // Same as above
32’h_deadbeef // **Illegal**
7’h7f // Verilog style hex example (7 bits)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 11
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 11

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
12 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

12 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
5. General concepts, rules, and properties

The concepts, rules, and properties described in this clause are common to all component types and do not
determine how a component is implemented in a design.

5.1 Key concepts and general rules

This subclause describes the key concepts of SystemRDL and documents general rules about how to use the
language to define hardware specifications. Subsequent clauses contain details about working with each of
the individual components in SystemRDL. See also Annex C.

A component in SystemRDL is the basic building block or a container which contains properties that further
describe the component’s behavior. There are four structural components in SystemRDL: field, reg, regfile,
and addrmap. Additionally, there are two non-structural components: signal and enum.

Components can be defined in any order, as long as each component is defined before it is instantiated. All
structural components (and signals) need to be instantiated before being generated.

5.1.1 Defining components

To define components in SystemRDL, each definition statement shall begin with the keyword corresponding
to the component object being defined (as listed in Table 3). All components need to be defined before they
can be instantiated (see 5.1.2).

SystemRDL components can be defined in two ways: definitively or anonymously.
— Definitive defines a named component type, which is instantiated in a separate statement. The defin-

itive definition is suitable for reuse.
— Anonymous defines an unnamed component type, which is instantiated in the same statement (see

also 5.1.2). The anonymous definition is suitable for components that are used once.

A definitive definition of a component appears as follows.
component type_name {[property;]*};

An anonymous definition (and instantiation) of a component appears as follows.
component {[property;]*} instance_name;

a) In both cases, component is one of the keywords specified in Table 3 and each property is specified
as a name=value pair, e.g., name=”foo” (see 5.1.3.1).

b) For a definitively defined component, type_name is the user-specified name for the component.

Table 3—Component types

Type Keyword

Field field

Register reg

Register file regfile

Address map addrmap

Signal signal

Enumeration enum
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 13
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 13

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
c) For a anonymously defined component, instance_name is the user-specified name for instantiation
of the component.

d) The component definition body (specified within the curly braces {}) is comprised of zero or more of
the following.
1) Default property assignments
2) Property assignments
3) Component instantiations
4) Nested component definitions

The following code fragment shows a simple definitive field component definition for myField (and a
comment).

field myField {};

The following code fragment shows a simple anonymous field component definition for myField (and a
comment).

field {} myField;

5.1.2 Instantiating components

In a similar fashion to defining components, SystemRDL components can be instantiated in two ways.
a) A definitively defined component is instantiated in a separate statement, as follows.

type_name instance_name [[number] | [number : number]];
where
1) type_name is the user-specified name for the component.
2) instance_name is the user-specified name for instantiation of the component.
3) number is a simple decimal or hexadecimal number.

i) [number] specifies the size of the instantiated component array.
ii) [number : number] specifies the specific indices of the array. This form of instantiation

can only be used for field or signal components (see Clause 8 and Clause 6).
b) An anonymously defined component is instantiated in the statement that defines it (see also 5.1.1).

Components need to be defined before they can be instantiated. In some cases, the order of instantiation
impacts the structural implementation, e.g., for the assigning of bit positions of fields in registers (see
Clause 6 — Clause 11).

The following code fragment shows a simple scalar field component instantiation.

field {} myField; // single bit field instance named “myField”

The following code fragment shows a simple array field component instantiation.

field {} myField[8]; // 8 bit field instance named “myField”

5.1.3 Specifying component properties

Component properties define the specific function and purpose of a component, as well as its interaction
with other instantiated components. Property types include boolean, string, numeric, sizedNumeric,
14 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

14 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
unsizedNumeric, accessType (enum), addressingType (enum), precedenceType (enum), reference to another
instance, or a combination of these; see Table 4.

5.1.3.1 Property assignment

Each component type has its own set of pre-defined properties. Properties may be assigned in any order.
User-defined properties can also be specified to add additional properties to a component that are not pre-
defined by the SystemRDL specification (see Clause 11). A specific property shall only be set once per
scope (see 5.1.4). All component property assignments are optional.

A property assignment appears as follows.
property_name [= value];

When value is not specified, it is presumed the property_name is of type boolean and set to true.

The descriptions for the types of values that are legal for each property_name (and exceptions to those rules)
are explained in the corresponding clause for each individual component (see Clause 6 — Clause 11).

Example

field myField {
rclr; // Bool property assign, set implicitly to true
woset = false; // Bool property assign, set explicitly to false
name = “my field”; // string property assignment
sw = rw; // accessType property assignment

};

5.1.3.2 Assigning default values

Default values for a given property can be set within the current or any parent scope (see 5.1.4). Any
components defined in the same or lower scope as the default property assignment shall use the default
values for properties in the component not explicitly assigned in a component definition. A specific property
default value shall only be set once per scope.

Table 4—Property types

Type Definition Default

boolean true or false. false

string See 4.5. ""

numeric See 4.6. Undefined

sizedNumeric A simple number with the value of 0 or a
Verilog-style number, see 4.6 (c - e).

Undefined

unsizedNumeric A simple number, see 4.6 (a and b). Undefined

accessType
(enum)

One of rw, wr, r, w, or na. See Clause 7. rw

addressingType
(enum)

One of compact, regalign, or fullalign.
See Clause 10.

regalign

precedenceType
(enum)

One of hw or sw. See Clause 7. sw

reference A pointer to a component instance or com-
ponent’s instance property.

Null
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 15
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 15

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
A default property assignment appears as follows.
default property_name [= value];

When value is not specified, it is presumed the property_name is of type boolean and the default value is set
to true.

The descriptions for the types of values that are legal for each property_name (and exceptions to those rules)
are explained in the corresponding clause for each individual component (see Clause 6 — Clause 11).

Example

reg {
default name = “default name”;
field {} f1; // assumes the name “default name” from above
field { name = “new name”; } f2; // name assignment overrides “default name”

} some_reg;

5.1.3.3 Dynamic assignment

Some properties may have their values assigned or overridden on a per-instance basis. When a property is
assigned after the component is instantiated, the assignment itself is referred to as a dynamic assignment.
Properties of a referenced instance shall be accessed via the arrow operator (->).

A dynamic assignment appears as follows.
instance_name -> property_name [= value];

where
a) instance_name is a previously instantiated component (see 5.1.2).
b) When value is not specified, it is presumed the property_name is of type boolean and the value is set

to true.
c) The dynamically assignable properties for each component type are explained in the corresponding

clause for each individual component (see Clause 6 — Clause 11).
d) In the case where instance_name is an array, the following possible dynamic assignment scenarios

exist.
1) If the component type is field or signal, the fact the component is an array does not matter—the

assignment is treated as if the component were a not an arrray.
2) If the component type is reg, regfile, or addrmap

i) The user can dynamically assign the property for all elements of the array by eliminating
the square brackets ([]) and the array index from the dynamic assignment.
array_instance_name -> property_name [= value];

ii) The user can dynamically assign the property for an individual index of the array by using
square brackets ([]) and specifying the index to be assigned within the square brackets.
array_instance_name [index] -> property_name [= value];

Example 1

This example assigns a simple scalar.

reg {
field {} f1;
f1->name = “New name for Field 1”;

} some_reg;
16 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

16 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Example 2

This example assigns an array.

reg {
field {} f1;
f1->name = “New name for Field 1”;

} some_reg[8];
some_reg->name = “This value is applied to all elements in the array”;
some_reg[3]->name = “This value is only applied to the 4th item in the

 array of 8”;

5.1.3.4 Property assignment precedence

There are several ways to set values on properties. The precedence for resolving them is (from highest to
lowest priority):

a) dynamic assignment (see 5.1.3.3)
b) property assignment (see 5.1.3.1)
c) default property assignment (see 5.1.3.2)
d) SystemRDL default value for property type (see Table 4)

Example

reg {
default name =”def name”;
field f_type { name = “other name”; };
field {} f1;
field { name = “property assigned name”; } f2;
f_type f3;
f3->name = “Dynamic Assignment”;

} some_reg;

Results

// Final Values of all fields
// f1 name is “def name”
// f2 name is “property assigned name”
// f3 name is “dynamic assignment”

5.1.4 Scoping

SystemRDL is a statically scoped language, where the root scope is the outermost scope. The body of any
defined component is its own scope. All component names within a given scope shall be unique. All
instance names within a given scope shall be unique. However, there can be a component and instance with
the same name in the same scope.

The only component definitions visible at any scope shall be those defined in the current scope and any
parent scope, up to and including the root scope. To resolve a component name, SystemRDL searches from
the current scope to the outer scope until it finds the first matching component name.

The root scope shall only contain component definitions and signal instantiations. No other component
instantiations shall be allowed in the root scope. Therefore, all component instantiations shall occur within
an addrmap component definition (see Clause 10). The root(s) of an addrmap hierarchy are those
addrmaps that are defined, but not subsequently instantiated.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 17
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 17

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Only instances instantiated in the current scope can be referenced within that scope. A child instance can be
referenced via the dot operator (.).

A instance reference appears as follows.

instance_name [. child_instance_name]*

where

a) instance_name is a previously instantiated component in the current scope (see 5.1.2).

b) the first use of child_instance_name shall exist in instance_name’s scope.

c) for all other child_instance_names, any subsequent child_instance_name shall exist in the previous
child_instance_name’s scope.

Dynamic assignments can also be layered in SystemRDL from the innermost to the outermost scope; i.e.,
dynamic assignments that are specified at an outer scope override those that are specified at an inner scope.
No more than one assignment of a property per scope is allowed in SystemRDL.

Example

regfile foo_rf {

reg some_reg_r {

field {} a[2]=2'b00;// End of field: a

a->reset = 2'b01;// Dynamic Assignment overriding reset val

field {} b[23:16]=8'hFF; // End of field: b

};

some_reg_r rega;

some_reg_r regb;

rega.a->reset = 2'b10; // This overrides the other dynamic assign

rega.b->reset = 8'h00;

rega.b->reset = 8'h5C; // Error two assigns from the same scope

}; // End addrmap: foo

addrmap bar {

foo_rf foo;

foo.rega.a->reset = 2'b11;

// Override the reset value again at the outermost scope

}; // End addrmap: bar

5.2 General component properties

This subclause details properties that generally apply to SystemRDL components.

5.2.1 Universal properties

The name and desc properties can be used to add descriptive information to the SystemRDL code. The use
of these properties encourages creating descriptions that help generate rich documentation. All components
have a instance name already specified in SystemRDL; name can provide a more descriptive name and desc
can specify detailed documentation for that component.
18 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

18 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Table 5 lists and describes the universal SystemRDL component properties.

5.2.1.1 Semantics

If name is undefined, it is presumed to be the instance name.

5.2.1.2 Example

This example shows usage of the name and desc properties.

reg {
field {

name=”Interface Communication Control”;
 // If name is not specified its implied to be ICC
desc="This field is used [...] desired low power state.";

} ICC[4];
} ICC_REG; // End of Reg: ICC_REG

5.2.2 Structural properties

Table 6 lists and describes the structural component properties.

5.2.2.1 Semantics

a) These properties can be applied as a boolean or a bit mask (sizedNumeric) to a field component. A
mask shall have the same width as the field. Masked bits (bits set to 1) are not tested (donttest) or
compared (dontcompare).

b) They can also be applied to reg, regfile, and addrmap components, but only as a boolean.
c) donttest and dontcompare can not both be set to true or a non-zero mask for a particular compo-

nent.

5.2.2.2 Example

This example shows usage of the donttest and dontcompare properties.

Table 5—Universal component properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

name Specifies a more descriptive name (for documentation purposes). string Yes

desc Describes the component’s purpose. string Yes

Table 6—Structural component properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

donttest This testing property indicates the component is not included in struc-
tural testing.

boolean or
sizedNu-
meric

Yes

dontcom-
pare

This is testing property indicates the components read data shall be dis-
carded and not compared against expected results.

boolean or
sizedNu-
meric

Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 19
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 19

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
reg {
field { donttest;} a;
field {} b[8];
field { dontcompare;} c;
b->dontcompare = 8’hF0; // The upper four bits of this 8 bit field will

// not be compared.
};
20 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

20 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
6. Signals

6.1 Introduction

A signal is a non-structural component used to define and instantiate wires (as additional inputs and/or
outputs). Signals create named external ports on an implementation and can connect certain internal
component design properties to the external world. Signal definitions have the same definition and
instantiation as other SystemRDL components; see 5.1. To use signals to control resets in SystemRDL, see
14.1.

6.2 Signal properties

Table 7 shows the signal properties.

6.2.1 Semantics

a) sync and async shall not be set to true on the same signal.
b) A signal that does not specify sync or async is defined as neither.
c) activelow and activehigh shall not be set to true on the same signal
d) A signal that does specify activehigh or activelow has no formal specified active state.
e) cpuif_reset property can only be set true for one instantiated signal in an address map and that

address map’s non-address map instances.
f) field_reset property can only be set to true for one instantiated signal in an address map and that

address map’s non-address map instances.
g) If signalwidth is specified in a signal component definition, its size cannot be overridden during

instantiation.

6.2.2 Example

See the example in 6.3.2.

Table 7—Signal properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

signalwidth Width of the signal. numeric No

sync Signal is synchronous to the clock of the component. boolean Yes

async Signal is asynchronous to the clock of the component. boolean Yes

cpuif_reset Default signal to use for resetting the software interface logic. If
field_reset is not defined, this reverts to the default reset signal. This
parameter only controls the CPU interface of a generated slave and is
provided as an advanced feature for designs when the reset strategy is
different for the bus to which the registers are connected and the register
implementations themselves.

boolean Yes

field_reset Default signal to use for resetting field implementations. This parame-
ters controls on the resets used on the HW interfaces of a generated
slave.

boolean Yes

activelow Signal is active low (state of 0 means ON). boolean Yes

activehigh Signal is active high (state of 1 means ON). boolean Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 21
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 21

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
6.3 Signal definition and instantiation

In addition to the general rules for component definition and instantiation (see 5.1), the following rules also
apply.

6.3.1 Semantics

a) If signalwidth (see 6.2) is not defined, signal instances may be declared as single-bit or multi-bit
signals, as defined in (5.1.2).

b) If signalwidth is not predefined in the component definition, a signal type may be instantiated as
any width.

c) If signalwidth is predefined during signal definition, any specified signal width shall match the pre-
defined width.

6.3.2 Example

This example defines an 8-bit field and connects it to a signal so the reset value for this field is supplied
externally.

addrmap foo {
reg { field {} a[8]=0; } reg1;
signal { signalwidth=8;} mySig[8];
reg1.a->reset = mySig; // Instead of resetting this field to a constant

// we connect it to a signal to provide an
// External reset value

};
22 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

22 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
7. Field component

7.1 Introduction

The field component is the lowest-level structural component in SystemRDL. No other structural
component can be defined within a field component; however, signal and enumeration (enum) components
can be defined within a field component. The field component is also the most varied component in
SystemRDL because it is an abstraction representing different types of storage element structures. Field
definitions have the same definition and instantiation as other SystemRDL components; see 5.1.

Typically, a field component describes a flip-flop or wire/bus, along with the logic to set and sample its
value for each instantiated field in the design. Properties specified for a field serve multiple purposes, from
determining the nature of the behavior that is implied for a field to naming and describing a field. Storage
elements accessed by software may contain a single entity or a number of bit-fields each with its own
meaning and purpose. In SystemRDL, each entity in a software read or write is termed a field.

7.2 Defining and instantiating fields

Since a field component describes the lowest-level components within SystemRDL, it cannot contain other
fields. Fields are instantiated in a register (reg) component (see Clause 8). Fields are defined and instantiated
as described in 5.1, with the following additional semantics. See also 7.3.

a) No other types of structural components shall be defined within a field component.
b) Fields shall be instantiated only within a register component.
c) Unless bit allocation is explicity defined, fields shall be positioned sequentially in the order they are

instantianted in a register, starting with the least significant bit. lsb0 mode defines 0 as the least sig-
nificant bit, which is the default, and msb0 defines regwidth-1 as the least significant bit.

d) In the default mode lsb0, unless bit allocation is explicitly defined, fields shall be positioned sequen-
tially in the order they are instantiated in a register, starting at bit 0 with no padding between fields.
(Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) greater than the
most significant bit (MSB) of the previous field.)

e) In the mode msb0, unless bit allocation is explicitly defined, fields shall be positioned sequentially
in the order they are instantiated in a register, starting at bit regwidth-1 with no padding between
fields. (Each subsequent field’s least significant bit (LSB) shall be made equal to one (1) less than
the most significant bit (MSB) of the previous field.)

f) The exact bit position of instantiated fields in a register may determined by the SystemRDL com-
piler as described in d or specified explicitly by using exact indices (see Clause 8).

g) The msb0 and lsb0 properties shall only be applied to an address map component (see Clause 10).
h) Some field properties can be dynamically assigned a value after the property has been defined.

There is a column in the property table for each component which indicates whether dynamic
assignment is supported for a particular property.

i) All boolean field properties are false by default.
j) A field instantiation which is not followed by a specific size or index contained square brackets ([])

defaults to size of the field definition’s fieldwidth parameter. If the definition is anonymous, the
default fieldwidth is 1.

7.3 Using scalar and array field instances

Fields, like all structural components in SystemRDL, can be instanced as scalars and arrays. Fields shall be
instantiated in a register component and the field’s bit position can be derived implicitly by a compiler or
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 23
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 23

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
specified explicitly by a user. For the field component only, the field's bit position can be implicitly or
explicitly specified. This notation is of the form

a) for definitive field instantiation
field_type field_instance_name [[number] | [number : number]];

where
1) field_type is the user-specified name for a previous definitively defined component of type

field.
2) field_instance_name is the user-specified name for instantiation of the component.
3) number is a simple decimal or hexadecimal number.

i) [number] specifies the size of the instantiated component array.
ii) [number : number] can only be used for field or signal (see Clause 6) components.

b) for anonymous field instantiation
field {[property;]*} field_instance_name [[number] | [number : number]];

where
1) each property is specified as a name=value pair, e.g., name=”foo” (see 5.1.3.1).
2) field_instance_name is the user-specified name for instantiation of the component.
3) number is a simple decimal or hexadecimal number.

i) [number] specifies the size of the instantiated component array.
ii) [number : number] can only be used for field or signal (see Clause 6) components.

Examples

These are examples of the anonymous form.

field {} singlebitfield; // 1 bit wide, not explicit about position
field {} somefield[4]; // 4 bits wide, not explicit about position
field {} somefield2[3:0]; // a 4 bit field with explicit indices
field {} somefield3[15:8]; // an 8 bit field with explicit indices
field {} somefield4[0:31]; // a 32 bit field with explicit indices

How the compiler resolves bit positions for implicit fields is detailed in 8.1, which describes the register
component. Single element arrays may be treated by a SystemRDL compiler as a scalar or an array.

7.4 Field access properties

The combination of field access properties specified for a field component determines the component’s
behavior. Table 8 lists the available field access properties and describes how they are implemented.

Table 8—Field access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

hw = {rw |
wr | r | w |
na}

Design’s ability to sample/update a field. access
Type

No

sw = {rw |
wr | r | w |
na}

Programmer’s ability to read/write a field. access
Type

Yes
24 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

24 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
7.4.1 Semantics

a) All fields are given full access (read and write) by default.
b) rw (and wr) signify a field is both read and write; r indicates read-only; w indicates write-only; and

na specifies no read/write access is allowed.
c) All hardware-writable fields shall be continuously assigned unless a write enable is specified.
d) When a field is writable by software and write-only by hardware (but not write-enabled), all soft-

ware writes shall be lost on the next clock cycle. This shall reported as an error.
e) The standard implementation behavior is based on the combination of read and write properties

shown in Table 9.

NOTE—Any hardware-writable field is inherently volatile, which is important for verification and test purposes.

7.4.2 Example

See Table 9.

7.5 Hardware signal properties

While all of the hardware signal properties can be set within a field definition, typically they are assigned
after instantiation as these properties refer to items external to the field itself. By default, the reset value of
fields shall be unknown, e.g., x in Verilog. A specification can use static or dynamic reset values; however,
only static reset values shall be specified during field instantiation. The reset value, which is considered a
property in SystemRDL, shall follow an equal sign (=) after the instance name and the eventual size or
MSB/LSB information.

Table 9—Field behavior based on properties

Software Hardware Code sample Implementation

R+W R+W field f { sw = rw; hw = rw; }; Flip-flop

R+W R field f { sw = rw; hw = r; }; Flip-flop

R+W W field f { sw = rw; hw = w; }; Flip-flop

R+W - field f { sw = rw; hw = na; }; Flip-flop

R R+W field f { sw = r; hw = rw; }; Flip-flop

R R field f { sw = r; hw = r; }; Wire/Bus – constant value

R W field f { sw = r; hw = w; }; Wire/Bus – hardware assigns value

R - field f { sw = r; hw = na; }; Wire/Bus – constant value

W R+W field f { sw = w; hw = rw; }; D flip-flop

W R field f { sw = w; hw = r; }; D flip-flop

W W field f { sw = w; hw = w; }; Error – meaningless

W - field f { sw = w; hw = na; }; Error – meaningless

- R+W field f { sw = na; hw =rw; }; Warning – no software access

- R field f { sw = na; hw = r; }; Warning – no software access

- W field f { sw = na; hw = w; }; Error – unloaded net

- - field f { sw = na; hw = na; }; Error – nonexistent net
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 25
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 25

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
a) An anonymous definition of a field component with reset specified appears as follows.

field {[property; ...]} field_instance_name = sizedNumeric;

where

1) each property is specified as a name=value pair, e.g., name=”foo” (see 5.1.3.1).

2) field_instance_name is the user-specified name for instantiation of the component.

b) An instantiation of a definitive definition of a field component with reset specified appears as fol-
lows.

field_type field_instance_name [[number] | [number : number]] = sizedNumeric;

where

1) field_type is the user-specified name of a previously definitively defined component of type
field.

2) field_instance_name is the user-specified name for instantiation of the component.

3) number is a simple decimal or hexadecimal number.

i) [number] specifies the size of the instantiated component array.

ii) [number : number] can only be used for field or signal (see Clause 6) components.

Table 10 defines the hardware signal properties.

7.5.1 Semantics

a) Other than 0 or 0x0, only Verilog-style integers can be used to specify the reset value of a field.

b) A reset value assigned to a field with access properties of sw=r and hw=w without having a write
enable shall be reported as a warning.

7.5.2 Example

This example shows different types of hardware signal properties set during field instantiations.

signal {} some_reset;

field { reset = 1’b1; } a;

field {} b=0;

field {} c=0;

c->resetsignal = some_reset;

field {} d=0x0;

d->next = a; // d gets the value of a. D lags a by 1 clock.

field {} e[23:21]=3’b101;

b->reset = 3’b1; // Override the default POR value of b from 101 to 001

Table 10—Hardware signal properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

next The next value of the field; the D-input for flip-flops. reference Yes

reset Power on reset value for the field. numeric or
reference

Yes

resetsignal Name of reset signal (the default is RESET). reference Yes
26 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

26 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
7.6 Software access properties

The software access field properties provide a means of specifying commonly used software modifiers on
register fields. All the software properties which are defined as boolean values have a default value of false.
Some of these properties perform operations that directly effect the value of a field (rclr, woset, and woclr),
others allow the surrounding logic to effect software operations (swwe and swwel), and still others allow
software operations effecting the surrounding logic (swmod and swacc).

Table 11 defines the software access properties and uses pseudo-code snippets to define the behaviors. The
pseudo-code is of Verilog style and should be interpreted as such. The exact behavior of these properties
depends upon the semantics of the HDL generated by a particular SystemRDL implementation, together
with the execution environment (e.g., simulator) for that HDL.

7.6.1 Semantics

a) swmod indicates a generated output signal shall notify hardware when this field is modified by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right-hand side of an assignment to another property.

NOTE—Since rclr counts as a software write, properties like swmod cause the resulting output to be asserted
during software reads.

b) swacc indicates a generated output signal shall notify hardware when this field is accessed by soft-
ware. The precise name of the generated output signal is beyond the scope of this document. Addi-
tionally, this property may be used on the right hand side of an assignment to another property.

c) Fields specified as rclr (see Table 11) are treated as rw in all cases, even if a field is specified as
read-only by software. The rclr operation is effectively a special form of write, as a field’s value is
cleared as a direct result of the software transaction.

d) swwe and swwel have precedence over the software access property in determining its current
access state, e.g., if a field is declared as sw=rw, has a swwe property, and the value is currently
false, the effective software access property is sw=r.

Table 11—Software access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

rclr Clear on read (field = 0) boolean Yes

rset Set on read (field = all 1’s) boolean Yes

woset Write one to set (field = field | write_data). boolean Yes

woclr Write one to clear (field = field & ~write_data). boolean Yes

swwe Software write-enable active high (field = swwe ? new : cur-
rent).

boolean or
reference

Yes

swwel Software write-enable active low (field = swwel ? current :
new).

boolean or
reference

Yes

swmod Assert when field is software written or cleared. boolean or
reference

Yes

swacc Assert when field is software accessed. boolean or
reference

Yes

singlepulse The field asserts for one cycle when written 1 and then clears back to 0
on the next cycle. This creates a single-cycle pulse on the hardware
interface.

boolean Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 27
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 27

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
e) When specified, rclr resets a field to 0 and not its power-on value.
f) singlepulse fields shall be instantiated with a width of 1 and the power-on reset value shall be spec-

ified as 0.

7.6.2 Examples

Example 1

This example applies software properties using implicit and explicit methods of setting the properties.

field {
rclr; // Implicitly set the rclr property to true
swwe = true; // Explicitly set the swwe property to true

} a;

Example 2

This example uses the default keyword with these software properties and then overrides them.

reg example2 {
default woclr = true; // Explicitly set default of woclr to true
default swmod; // Implicitly set default of swmod to true

field {} a; // Assumes defaults
field {} b; // Assumes defaults
b->rclr=false; // Dynamic Assignment to false
field {rclr = false; } c;// Overrides rclr default
field {swmod = false; } d;// Overrides swmod default
field {rclr = false; swmod = false; } e;// Overrides both defaults
d->next = b->swmod;

};

7.7 Hardware access properties

Hardware access properties can be applied to fields to determine when hardware can update a hardware
writable field (we and wel), generate input pins which allow designers to clear or set the field (hwclr and
hwset) by asserting a single pin, or generate output pins which are useful for designers (anded, ored, and
xored).

Write-enable is critical for certain software-writable fields. The clear on read feature (rclr, see Table 11)
returns the next value (see 7.5) to software before clearing the field. When not write-enabled, the current
value is used instead since the “next” value is the current value. In the case of counters, the write-enable is
used to determine when a counter can be incremented.

The hwenable and hwmask properties can specify a bus showing which bits may be updated after any
write-enables, hardware-clears/-sets or counter-increment has been performed. The hwenable and hwmask
properties are similar to we and wel, but each has unique functionality. The we and wel act as write enables
to an entire field for a single bit or multiple bits. The hwmask and hwenable are essentially write enables or
write masks, but are applied on a bit basis. The priority of assignments a SystemRDL compiler should use is
shown in Table 12, which depicts a flow of information from left to right showing the stages that happen
when updating a field from its current value to determine its next state value.

A field’s width is typically determined when it is instantiated; however, there are times when specifying a
field’s width up-front is critical. If specified, the fieldwidth property forces all instances of the field to be a
28 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

28 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
specified width. If a field is instantiated without a specified width, the field shall be fieldwidth bits wide. It
shall be an error if the field is instantiated with an explicitly specified width that differs from the fieldwidth.

Table 13 defines the hardware access properties.

7.7.1 Semantics

a) we determines this field is hardware-writable when set, resulting in a generated input which enables
hardware access.

b) wel determines this field is hardware-writable when not set, resulting in a generated input which
enables hardware access.

c) we and wel are mutually exclusive.
d) hwenable and hwmask are mutually exclusive.

Table 12—Assignment priority

Event stage -> Hardware next stage -> Field next stage -> Register assign stage

we / wel / intr edge logic counter incr / counter decr SW/HW selection wire / dff assign

counter load / counter
we logic

hwset / hwclr

intr mask/en/sticky

Table 13—Hardware access properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

we Write-enable (active high). boolean or
reference

Yes

wel Write-enable (active low). boolean or
reference

Yes

anded Logical AND of all bits in field. boolean or
reference

Yes

ored Logical OR of all bits in field. boolean or
reference

Yes

xored Logical XOR of all bits in field. boolean or
reference

Yes

fieldwidth Determines the width of all instances of the field. This number shall be
a numeric. The default value of fieldwidth is 1.

numeric No

hwclr Hardware clear. This field need not be declared as hardware-writable. boolean Yes

hwset Hardware set. This field need not be declared as hardware-writable. boolean Yes

hwenable Determines which bits may be updated after any write enables, hard-
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will be updated.

sizedNu-
meric

Yes

hwmask Determines which bits may be updated after any write enables, hard-
ware clears/sets or counter increment has been performed. Bits that are
set to 1 will not be updated.

sizedNu-
meric

Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 29
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 29

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
7.7.2 Example

This example shows the application of a write-enable and the boolean anded.

reg example {
default sw = r;

field { anded;} a[4]=0; // This field will update its value every clock
// cycle. hw=rw by default. This field will also have
// an output ANDing the 4 bits of the field together

field { we; } b=0;// This field will only update on clock cycles
 // where the we is asserted. The name of the we signal is
// a function of the SystemRDL Compiler.

};

7.8 Counter properties

SystemRDL defines several special purpose fields, including counters. A counter is a special purpose field
which can be incremented or decremented by constants or dynamically specified values. Additionally,
counters can have properties that allow them to be cleared, set, and indicate various status conditions like
overflow and underflow.

7.8.1 Counter incrementing and decrementing

When a field is defined as a counter, the value stored by the field is the counter’s current value. There is an
implication of an additional input which shall increment/decrement the counter when asserted. By default,
counters are incremented/decremented by one (1), but developers can specify another static or dynamic
increment/decrement value. Since the validity or feasibility of an increment/decrement value is determined
by the field’s width (valid increment values can be of equal or smaller width than the field itself), custom
increment values shall be specified after the field has been instantiated and the field’s width determined.
Once an increment value has been explicitly specified for an instantiated field, the value may not be
changed.

Counter incrementing and decrementing in SystemRDL are controlled via the counters incrvalue/decrvalue
and incrwidth/decrwidth properties. The incrvalue/decrvalue property defaults to a value of 1, but can be
set to any constant that can be represented by the width of the counter. Additionally, the incrvalue/
decrvalue can be assigned to any signal or other field in the current address map scope so counters can
increment using dynamic or variable values. The incrwidth/decrwidth properties can be used as an
alternative to incrvalue/decrvalue so an external interface can be used to control the incrvalue/decrvalue
externally from SystemRDL. A SystemRDL compiler shall imply the nature of a counter as a up counter, a
down counter, or an up/down counter by the properties specified for that counter field.

Dynamic values may be another field instance in the address map of the same or smaller width, or another
signal in the design. If an externally defined signal is used for dynamic incrementing, its input is inferred to
have the same width as the counter.

Additionally, the properties incr and decr can be used to control the increment and decrement events of a
counter. These do not control the increment or decrement values, as incrvalue and decrvalue, but the actual
increment of the counter (as shown in Example 2). These properties can be only be assigned as references to
another component.

Example 1

This shows counter incrementing and decrementing.
30 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

30 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
field counter_f { counter; };

counter_f count1[4]; // Define a 4 bit counter from 3 to 0
count1->incrvalue=4’hf; // Increment the counter by 15 when incrementing

// count1 implies an UP counter

counter_f count2[3]; // Define a 3 bit counter from 6:4
count2->decrwidth=2; // provide 2 bit interface for a user to decide the decr

// value. This implies a down counter.
counter_f count3[5]=0; // Defines a 5 bit counter from 11 to 7

count3->incrvalue=2; // Define a an Up/Down Counter
count3->decrvalue=4;

field {} count4_incr[8] = 8’h0f; // define a field to control the incr
// value of another field.

counter_f count4[8]=0;
count4->incrvalue = count4_incr; // Counter is incremented by the value of

// another field in the same address map.

Example 2

This example uses incr to connect two 16-bit counters together to create a 32-bit counter.

field some_counter {
counter;
we;

}; // End of Reg: some_counter

reg some_counter_reg {
regwidth=16;
some_counter count[16]=0; // Create 16 bitcounter POR to 0

}; // End of Reg:

// Example 32 bit up counter
some_counter_reg count1_low;
some_counter_reg count1_high;

count1_high.count->incr = count1_low.count->overflow;
// Daisy chain the counters together to create a 32 bit counter from the 2
// 16 bit counters

7.8.2 Counter saturation and threshold

Counters are unsaturated by default, e.g., a 4-bit counter with a value of 0xf that is incremented by 1 has
the value 0x0. This is referred to as rolling over. The value of a saturated counter shall never exceed the
saturation value (either statically or dynamically assigned). By default, saturated counters saturate at the
maximum value the counter can hold without rolling over. Assigning a static or dynamic saturated value is
similar to assigning increment/decrement values, see 7.8.1.

Counters in SystemRDL may have an optional (static or dynamic) threshold value. The threshold property
does not cap the value of a counter in the way saturate does; instead, threshold counters are inferred to
contain an output which designates whether the counter’s value exceeds the threshold. See also 7.8.1.

saturate and threshold counters may be used individually and specified in any order.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 31
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 31

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Example 1

This shows counter saturation and thresholds.

field counter_f { counter; };
counter_f count1[4]; // Define a 4 bit counter from 3 to 0
count1->incrsaturate=4’hf; // keeps the counter from counting past 4’hf

counter_f count2[3]; // Define a 3 bit counter from 6:4
count2->decrthreshold=3’b2; // provide assertion when count hits 2

counter_f count3[5]=0; // Defines a 5 bit counter from 11 to 7
count3->incrsaturate;// Implies 5’h1F by default
count3->decrsaturate; // Implies 5’h1 by default
count3->decrthreshold=5’h3;

field {} count4_sat[4] = 4’h2; // define a field to control the saturate value
// of another field

field {} count4_thresh[4] =4’ha;

counter_f count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

Besides assigning values or references to the saturate or threshold properties on the left-hand side of an
assignment in SystemRDL, these properties can also be referenced on the right-hand side of an expression to
indicate the threshold has been crossed or the counter has saturated. This is often useful for generating an
interrupt indicating a specific condition has occurred.

Example 2

This shows right-hand side usage of saturate and threshold.

field {} count4_sat[4] = 4’h2; // define a field to control the saturate value
// of another field

field {} count4_thresh[4] =4’ha;
field {} is_at_threshold=0;
field {} is_saturated=0;

counter_f count4[4]=0; // This counters saturate and threshold are both dynamic
count4->incrthreshold = count4_thresh;
count4->incrsaturate = count4_sat;

// Single-bit result of threshold comparison assigned to is_at_threshold field
is_at_threshold->next = count4->incrthreshold;
is_saturated->next = count4->incrsaturate;

Counters can also use the properties underflow and overflow to indicate the counter has rolled over. These
are useful for many applications such as generating an interrupt based on a counter overflow/underflow.

Example 3

This shows overflow and underflow counter properties.

field counter_f { counter; };
field {} has_overflowed;
32 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

32 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
counter_f count1[5]=0; // Defines a 5 bit counter from 6 to 1

count1->incrthreshold=5’hF;

has_overflowed = count1->overflow;

Table 14 defines the counter field properties.

7.8.2.1 Semantics

a) incrwidth and incrvalue are mutually exclusive (per counter).

b) decrwidth and decrvalue are mutually exclusive (per counter).

c) The default value of incrsaturate is the maximum value (2^(number of counter bits) -1) of the coun-
ter.

Table 14—Counter field properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

counter Field implemented as a counter. boolean Yes

threshold A comparison value or the result of a comparison. See also: 7.8.2.1.
This is the same as incrthreshold.

numeric or
reference

Yes

saturate A comparison value or the result of a comparison. See also: 7.8.2.1.
This is the same as incrsaturate.

numeric or
reference

Yes

incrthresh-
old

A comparison value or the result of a comparison. See also: 7.8.2.1.
This is the same as threshold.

numeric or
reference

Yes

incrsaturate A comparison value or the result of a comparison. See also: 7.8.2.1.
This is the same as saturate.

numeric or
reference

Yes

overflow Overflow signal asserted when counter overflows or wraps. reference Yes

underflow Underflow signal asserted when counter underflows or wraps. reference Yes

incrvalue Increment counter by specified value. numeric or
reference

Yes

incr References the counter’s increment signal. Use to actually increment
the counter, i.e, the actual counter increment is controlled by another
component or signal (active high).

reference Yes

incrwidth Width of the interface to hardware to control incrementing the counter
externally.

numeric Yes

decrvalue Decrement counter by specified value. numeric or
reference

Yes

decr References the counter’s decrement signal. Use to actually decrement
the counter, i.e, the actual counter decrement is controlled by another
component or signal (active high).

reference Yes

decrwidth Width of the interface to hardware to control decrementing the counter
externally.

numeric Yes

decrsatu-
rate

A comparison value or the result of a comparison. See also: 7.8.2.1. numeric or
reference

Yes

decrthresh-
old

A comparison value or the result of a comparison. See also: 7.8.2.1. numeric or
reference

Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 33
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 33

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
d) The default value of incrthreshold is the maximum value (2^(number of counter bits) -1) of the
counter.

e) The default value of decrsaturate is 1.
f) The default value of decrthreshold is 1.
g) incrthreshold/decrthreshold used on the left-hand side of an assignment in SystemRDL assigns

the counter’s threshold to the number or reference specified in the right-hand side of the assignment.
h) incrsaturate/decrsaturate used on the left-hand side of an assignment in SystemRDL assigns the

counter’s saturation property to the number or reference specified in the right-hand side of the
assignment.

i) incrthreshold/decrthreshold used on the right-hand side of an assignment in SystemRDL is refer-
encing the counter’s threshold output, which is a single bit value indicating whether the threshold
has been crossed. This value shall only be asserted to 1 when the value is exactly the threshold value
specified.

j) incrsaturate/decrsaturate used on the right-hand side of an assignment in SystemRDL is referenc-
ing the counter’s saturate output, which is a single bit value indicating whether the saturation has
occurred. This value shall only be asserted to 1 when the value of the counter matches exactly the
saturation value specified.

7.8.2.2 Example

See Examples 1 - 3 in 7.8.2.

7.9 Interrupt properties

Designs often have a need for interrupt signals for various reasons, e.g., so software can disable or enable
various blocks of logic when errors occur. Interrupts are unlike most field properties in that they operate on
both the register level and the field level. Any register which instantiates an interrupt field (a field with the
intr property specified) is considered an interrupt register. Each interrupt register has an associated
interrupt signal which is the logical OR of all interrupt fields in the register (post-masked/enabled if the
fields are masked or enabled). By default, this interrupt signal is inferred as an output; however, register files
and/or address maps can be used to further aggregate these interrupts (see Clause 9, Clause 10, and the
hierarchical interrupt example in 14.2). Interrupts may be masked, or enabled by other fields or externally
defined signals—they have an easy way of being turned on and off by software if desired.

By default, all interrupt fields have the stickybit property; this can be suppressed (using nonsticky) or
changed to sticky. The stickybit and sticky properties are similar as they both define a field as sticky,
meaning once hardware or software has written a one (1) into any bit of the field, the value is stuck until
software clears the value (using a write or clear on read). The difference between stickybit and sticky is
each bit in a stickybit field is handled individually, whereas sticky applies a sticky state to all bits in an
instantiated field (which is useful when designers need to store a multi-bit value, such as an address). For
single-bit fields, there is no difference between stickybit and sticky.

By default, all interrupts are level-triggered, i.e., the interrupt is triggered at the positive edge of the clock if
the next value of the interrupt field is asserted. Since interrupts are typically stickybit, the value is latched
and held until software clears the interrupt. The edge-interrupt triggering mechanisms (posedge, negedge,
and bothedge), like level-triggered interrupts, are synchronous.

A nonsticky interrupt is typically used for hierarchical interrupts, e.g., a design has a number of interrupt
registers (meaning a number of registers with one or more interrupt fields instantiated within). Rather than
promoting a number of interrupt signals, the developer can specify an aggregate interrupt register (typically
unmasked, though a mask/enable may be specified) containing the same number of fields as there are
interrupt signals to aggregate. Each field is defined as a nonsticky interrupt and the next value of each
34 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

34 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
interrupt is directly assigned an interrupt pin for each interrupt register to be aggregated. Interrupt types are
defined with modifiers to the intr property. These modifiers are not booleans and are only valid in
conjunction with the intr keyword. The nonsticky modifier can be used in conjunction with posedge,
negedge, bothedge, and level.

The syntax for a interrupt property modifiers appears as follows.
[nonsticky] [posedge | negedge | bothedge | level] intr;

Table 15 lists and describes the available interrupt types.

Further more there are additional interrupt properties that can be used to mask or enable an interrupt. The
enable, mask, haltenable, and haltmask keywords (see Table 16) are all properties of type reference that
are used to point to other fields or signals in the SystemRDL description. The mask and haltmask
properties can be assigned to fields and used to control the propagation of an interrupt. If an interrupt bit is
set and connected to a mask/enable, the interrupt’s final value is gated by the mask/enable. The logical
description of this operation is

final interrupt value = interrupt value & enable;
final interrupt value = interrupt value & !mask;
final halt interrupt value = interrupt value & haltenable;
final halt interrupt value = interrupt value & !haltmask.
//Further information on interrupts and their behavior as well a more complete
//example can be found in 14.2.

Example

reg block_int_r {
 name = "Example Block Interrupt Register";
 desc = "This is an example of an IP Block with 3 int events. 2

of these events are non fatal
 and the third event multi_bit_ecc_error is fatal";

 default hw=w; // HW can Set int only
 default sw=rw; // SW can clear
 default woclr; // Clear is via writing a 1

field {
 desc = "A Packet with a CRC Error has been received";
 level intr;
 } crc_error = 0x0;

Table 15—Interrupt types

Interrupt Description

posedge Interrupt when next goes from low to high.

negedge Interrupt when next goes from high to low.

bothedge Interrupt when next changes value.

level Interrupt while the next value is asserted and main-
tained (the default).

nonsticky Defines a non-sticky (hierarchical) interrupt; the associ-
ated interrupt field shall not be locked. This modifier can
be specified in conjunction with the other interrupt
types.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 35
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 35

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
 field {
 desc = "A Packet with an invalid length has been received";
 level intr;
 } len_error = 0x0;
}; // End of Reg: block_int

reg block_int_en_r {
 name = "Example Block Interrupt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";

// Enable
 } crc_error = 0x1;
 field {
 desc = "Enable: A Packet with an invalid length has been

received";// Enable
 } len_error = 0x1;
}; // End of Reg: block_int_en_r

reg block_halt_en_r {
 name = "Example Block Halt Enable Register";
 desc = "This is an example of an IP Block with 3 int events";

 default hw=na; // HW can't access the enables
 default sw=rw; // SW can control them

 field {
 desc = "Enable: A Packet with a CRC Error has been received";
 } crc_error = 0x0; // not a fatal error do not halt
 field {
 desc = "Enable: A Packet with an invalid length has been received";
 } len_error = 0x0; // not a fatal error do not halt
}; // End of Reg: block_halt_en_r

// Block A Registers

 block_int_r block_a_int; // Instance the Leaf Int Register
 block_int_en_r block_a_int_en; // Instance the corresponding Int

//Enable Register
 block_halt_en_r block_a_halt_en; // Instance the corresponding halt

//enable register

 // This block connects the int bits to their corresponding int enables and
//halt enables

 block_a_int.crc_error->enable = block_a_int_en.crc_error;
 block_a_int.len_error->enable = block_a_int_en.len_error;
 block_a_int.multi_bit_ecc_error->enable =

block_a_int_en.multi_bit_ecc_error;

 block_a_int.crc_error->haltenable = block_a_halt_en.crc_error;
 block_a_int.len_error->haltenable = block_a_halt_en.len_error;
 block_a_int.multi_bit_ecc_error->haltenable =

block_a_halt_en.multi_bit_ecc_error;
36 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

36 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Table 16 defines the interrupt properties.

7.9.1 Semantics

a) enable and mask are mutually exclusive.
b) haltenable and haltmask are mutually exclusive.
c) nonsticky, sticky, and stickybit are mutually exclusive.
d) The sticky and stickybit properties are normally used in the context of interrupts, but may be used

in other contexts as well.
e) Assignments of signals or fields to the enable, mask, haltenable, and haltmask properties shall be

of the same bit width as the field.
f) posedge, negedge, bothedge, and level are only valid if intr is true and can only be specified as

modifiers to the intr property—they cannot be specified by themselves.
g) posedge, negedge, bothedge, and level are mutually exclusive.

7.9.2 Example

This example illustrates the use of sticky and stickybit interrupts.

field { level intr; } some_int=0;
field {} some_mask = 1’b1;
field {} some_enable = 1’b1;

some_int->mask = some_mask;
some_int->haltenable = some_enable;

field { level intr; rclr;} a_multibut_int[4]=0;
// Individual bits being set 1 will
// Accumulate as this is stickybit by default

Table 16—Field access interrupt properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

intr Interrupt, part of interrupt logic for a register. boolean Yes

enable Defines an interrupt enable (the inverse of mask); i.e., which bits in an
interrupt field are used to assert an interrupt.

 reference Yes

mask Defines an interrupt mask (the inverse of enable); i.e., which bits in an
interrupt field are not used to assert an interrupt.

 reference Yes

haltenable Defines a halt enable (the inverse of haltmask); i.e., which bits in an
interrupt field are set to de-assert the halt out.

 reference Yes

haltmask Defines a halt mask (the inverse of haltenable); i.e., which bits in an
interrupt field are set to assert the halt out.

reference Yes

sticky Defines the entire field as sticky; i.e., the value of the associated inter-
rupt field shall be locked until cleared by software (write or clear on
read).

boolean Yes

stickybit Defines each bit in a field as sticky (the default); i.e., the value of each
bit in the associated interrupt field shall be locked until the individual
bits are cleared by software (write or clear on read).

boolean Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 37
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 37

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
field { posedge intr; sticky; woclr; } some_multibit_int[4]=0;
// This field will hold the first value written to it until its cleared by
// writing ones

7.10 Miscellaneous field properties

There are additional properties for fields which do not fall into any of the previous categories. This
subclause describes these additional miscellaneous properties.

a) The encode property enumerates a field definition for additional clarification purposes. encode can
only be applied to a validly scoped component of type enum (see 12.2).

b) The precedence property specifies how contention issues are resolved during field updates, e.g., a
field which has hw=rw and sw=rw.
1) precedence = sw (the default) indicates software takes precedence over hardware on accessing

registers (over the hw accesses of type we, wel, incrvalue, hwset, and hwclr). This is a field-
only property and does not effect the other fields in the register.

2) precedence = hw indicates hardware takes precedence over software on accessing registers (on
the hw accesses of type we, wel, incrvalue, hwset, and hwclr). This is a field-only property
and does not effect the other fields in the register.

3) In some cases of collisions between hardware and software, both operations can be satisfied,
but this is beyond the scope of the SystemRDL specification and such behavior is undefined.

Table 17 details the miscellaneous field properties.

7.10.1 Semantics

a) An encode property shall be assigned to an enum type.
b) The field’s width and the enumeration’s width shall be identical when assigning the encode property

to the enumeration.

7.10.2 Example

This example shows precedence and encode.

enum cfg_header_type_enum {
 normal = 7'h00 { desc = "Type 0 Configuration Space Header"; };
 pci_bridge = 7'h01 { desc = "PCI to PCI Bridge"; };
 cardbus_bridge = 7'h10 { desc = "PCI to CardBus Bridge"; };
 };
field {
 hw = rw; sw = rw;

 precedence = sw;
encode = cfg_header_type_enum;

 } hdrType [6:0]=0;

Table 17—Miscellaneous properties

Property Behavior/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

encode Binds an enumeration to a field. reference
to enum

Yes

precedence Controls whether precedence is granted to hardware (hw) or software
when contention occurs (sw).

hw | sw Yes
38 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

38 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
8. Register component

In SystemRDL, a register is defined as a set of one or more SystemRDL field instances that are atomically
accessible by software at a given address. A register definition specifies its width and the types and sizes of
the fields that fit within that width (the register file and address map components determine address
allocation; see Clause 9 and Clause 10).

Registers can be instantiated in three forms.
— internal implies all register logic is created by the SystemRDL compiler for the instantiation (the

default form).
— external signifies the register/memory is implemented by the designer and the interface is inferred

from instantiation. External registers are used for complex or proprietary memory (e.g., RAM and
ROM).

— alias allows software to access another register with different properties (i.e., read, write, woclr,
etc.). Alias registers are typically used for debug registers, where designers want to allow backdoor
access to registers and memories that should not be touched by software, except for testing. Sys-
temRDL allows designers to specify alias registers for internal or external registers.

8.1 Defining and instantiating registers

Register components (reg) have the same definition and instantiation syntax as other SystemRDL
components; see 5.1.

8.1.1 Semantics for all registers

a) Within a register, the only components that can be instantiated are field components and signals.
b) At least one field shall be instantiated within a register.
c) Field instances shall not occupy overlapping bit positions within a register.
d) Field instances shall not occupy a bit position exceeding the MSB of the register. The default width

of a register (regwidth) is 32 bits.
e) All registers shall have a width = 2N, where N >=3.
f) Field instances that do not have explicit bit positions specified are automatically inferred based on

the addrmap mode of lsb0 (the default) or msb0.

8.2 Instantiating internal registers

Registers whose implementation can be built by a SystemRDL compiler are called internal registers.

8.2.1 Semantics

Registers shall be instantiated as internal registers by placing the internal keyword before the register type
name or instantiating the component as described in 5.1.

a) A definitive definition of an internal register appears as follows.
reg reg_name {[reg_body;]*};
[internal] reg_name reg_instance [number];

where
1) reg_name is the user-specified register name.
2) reg_body is one or more of the following:
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 39
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 39

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
i) a valid register property
ii) a component definition for a field, signal, or enum component
iii) a component instantiation for a field or a signal.

3) reg_instance is the user-specified name for instantiation of the component.
4) number is a simple decimal or hexadecimal number.

[number] specifies the size of the instantiated component array.
b) An anonymous definition (and instantiation) of an internal register appears as follows.

[internal] reg {[reg_body;]*} reg_instance [number];
where
1) reg_body is one or more of the following:

i) a valid register property
ii) a component definition for a field, signal, or enum component
iii) a component instantiation for a field or a signal.

2) each property is specified as a name=value pair, e.g., name=”foo” (see 5.1.3.1).
3) reg_instance is the user-specified name for instantiation of the component.
4) number is a simple decimal or hexadecimal number.

[number] specifies the size of the instantiated component array.

8.2.2 Example

This example illustrates the definition and instantiation of internal registers.

reg myReg { field {} data[31:0]; };
internal myReg extReg; // single internal register
myReg extArray[32]; // internal register array of size 32

8.3 Instantiating external registers

SystemRDL can describe a register’s implementation as external, which is applicable for large arrays of
registers and provides an alternate implementation to what a SystemRDL compiler might provide. External
registers are identical to internal registers, except the actual implementation of the register is not created by
the compiler and the fields of an external register are not inferred to be implemented as wires and flip-flops.

8.3.1 Semantics

Registers shall be instantiated as external registers by placing the keyword external before the register type
name or by instantiating the component as described in 5.1.

a) A definitive definition of an external register appears as follows.
reg reg_name {[reg_body;]*};
external reg_name reg_instance [number];

where
1) reg_name is the user-specified register name.
2) reg_body is one or more of the following:

i) a valid register property
ii) a component definition for a field, signal, or enum component
iii) a component instantiation for a field or a signal.

3) reg_instance is the user-specified name for instantiation of the component.
40 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

40 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
4) number is a simple decimal or hexadecimal number.
[number] specifies the size of the instantiated component array.

b) An anonymous definition (and instantiation) of an external register appears as follows.
external reg {[reg_body;]*} reg_instance [number];

where
1) reg_body is one or more of the following:

i) a valid register property
ii) a component definition for a field, signal, or enum component
iii) a component instantiation for a field or a signal.

2) each property is specified as a name=value pair, e.g., name=”foo” (see 5.1.3.1).
3) reg_instance is the user-specified name for instantiation of the component.
4) number is a simple decimal or hexadecimal number.

[number] specifies the size of the instantiated component array.

8.3.2 Example

This example illustrates the definition and instantiation of external registers.

reg myReg { field {} data[31:0]; };
external myReg extReg; // single external register
external myReg extArray[32]; // external register array of size 32

8.4 Instantiating alias registers

An alias register is a register that appears in multiple locations of the same address map. It is physically
implemented as a single register such that a modification of the register at one address location appears at all
the locations within the address map. The accessibility of this register may be different in each location of
the address block.

Alias registers are allocated addresses like physical registers and are decoded like physical registers, but
they perform these operations on a previously instantiated register (called the primary register). Since alias
registers are not physical, hardware access and other hardware operation properties are not used. Software
access properties for the alias register can be, and typically are, different from the primary register.

8.4.1 Semantics

Registers shall be instantiated as alias registers by placing the keyword alias before the register type name.
a) An instanciation of an alias register appears as follows.

reg reg_name {[reg_body;]*};
reg_name reg_primary_inst;
alias reg_primary_inst reg_name reg_instance;

where
1) reg_name is the user-specified register name.
2) reg_body is one or more of the following:

i) a valid register property
ii) a component definition for a field, signal, or enum component
iii) a component instantiation for a field or a signal.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 41
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 41

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
3) reg_instance is the user-specified name for instantiation of the component.
4) reg_primary_inst is the primary register to which the alias is bound

b) Every field in the alias register needs to have the same name as a field in the primary register and the
two fields shall have the same position and size in each (corresponding) register.

c) The alias register is not required to have all the fields from the primary register.
d) The alias register shall have the same width as the primary register.
e) Hardware-related properties on aliases shall not be modified.

8.4.2 Example

This example shows the usage of register aliasing and how the primary register and its alias can have
different properties.

reg some_intr_r { field { level intr; hw=w; sw=r; woclr; } some_event };
addrmap foo {

some_intr_r event1;
// Create an alias for the DV team to use and modify its properties
// so that DV can for interrupt events and allow more rigorous structural
// testing of the interrupt.
alias event1 some_intr_r event1_for_dv;

event1_for_dv.some_event->sw=rw;
event1_for_dv.some_event->woclr = false;

};

8.5 Register properties

Table 18 lists and describes the register properties.

8.5.1 Semantics

a) All registers shall have a regwidth = 2N, where N >=3.
b) All registers shall have a accesswidth = 2N, where N >=3.
c) The value of the accesswidth property shall not exceed the value of the regwidth property.
d) The default value of the accesswidth property shall be identical to the width of the register.

Table 18—Register properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

regwidth Specifies the bit-width of the register (power of two). numeric No

accesswidth Specifies the minimum software access width (power of two) operation
that may be performed on the register.

numeric Yes

errextbus The associated register has error input. numeric Yes

intr Represents the inclusive OR of all the interrupt bits in a register after
any field enable and/or field mask logic has been applied.

reference Yes

halt Represents the inclusive OR of all the interrupt bits in a register after
any field haltenable and/or field haltmask logic has been applied.

reference Yes

shared Defines a register as being shared in different address maps. This is only
valid for register components and shall only be applied to shared com-
ponents. See 10.4 for more information.

boolean No
42 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

42 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
e) Partial software reads of a non-clear on read field are valid.
f) Any field that is software-writable or clear on read shall not span multiple software accessible sub-

words (e.g., a 64-bit register with a 32-bit access width may not have a writable field with bits in
both the upper and lower half of the register).

g) If a register instance is not explicitly assigned an address, a compiler needs to automatically assign
the address (see 10.3).

h) errextbus is only valid for external registers.

8.5.2 Example

These are examples of using register properties.

reg my64bitReg { regwidth = 64;
field {} a[63:0]=0;

};
reg my32bitReg { regwidth = 32;

accesswidth = 16;
field {} a[16]=0;
field {} b[16]=0;

};

8.6 Understanding field ordering in registers

Users can specify bit ordering implicitly and explicitly in two different ways. These approaches are called
msb0 and lsb0 in SystemRDL (see Table 21). Users who specifically specify bit indexes when instantiating
fields in registers do not need to specify one of these attributes, as the explicit indices imply one of these bit
ordering schemes. See also Clause 14.

a) The syntax:
field_type field_instance [high:low]
implies the use of lsb0 ordering (the default)

b) Alternately:
field_type field_instance [low:high]
implies the use of msb0 ordering

where
1) low and high are unsizedNumerics;
2) low == high implies a single bit field at the specified location;
3) for multi-bit fields, low < high.
4) The left-value is the index of the most significant bit of the field; the right-value is the index of

is the least significant bit of the field.

If a form specifying only a field’s size is used, understanding how a SystemRDL compiler assigns fields is
important. Fields are packed contiguously, end-to-end, starting at index 0 for lsb0 registers and starting at
index regwidth-1 in msb0 registers.

8.6.1 Semantics

a) Both the [low:high] and [high:low] bit specification forms shall not be used together in the
same register.

b) As long as all the registers in an address map are consistently msb0 or lsb0, no explicit msb0 or lsb0
property needs to be defined.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 43
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 43

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
c) Setting lsb0=true implies msb0=false; setting msb0=true implies lsb0=false.

8.6.2 Examples

This example shows how fields are packed when using lsb0 bit ordering.

lsb0;
reg {

field {} A; // Single bit from 0 to 0
field {} B[3]; // 3 bits from 3:1

// 4 bits from 7 to 4 are reserved and unused
field {} C[15:8]; // 8 Bits from 15 to 8
field {} C[5]; // 5 Bits from 20 to 16

};

This example shows how fields are packed when using msb0 bit ordering.

msb0;
reg {

field {} A; // Single bit from 31 to 31
field {} B[3]; // 3 bits from 28 to 30

// 12 bits from 16 to 27 are reserved and unused
field {} C[8:15]; // 8 Bits from 8 to 15
field {} C[5]; // 5 Bits from 3 to 7

};

8.7 Understanding interrupt registers

As discussed in 7.9, the field property intr also affects registers. Any register that contains an interrupt field
has two implied properties: intr and halt. These properties are outputs of the register. The intr register
property represents the inclusive OR of all the interrupt bits in a register after any field enable and/or field
mask logic has been applied. The halt register property represents the inclusive OR of all the interrupt bits in
a register after any field haltenable and/or field haltmask logic has been applied.

8.7.1 Semantics

a) The intr and halt register properties are outputs; they should only occur on the right-hand side of an
assignment in SystemRDL.

b) The intr property shall always be present on a intr register even if no mask or enables are specified.
c) The halt property shall only be present if haltmask or haltenable is specified on at least one field in

the register.

8.7.2 Example

This example connects an implicit intr output property to another field.

reg {
field { intr; } some_intr;
field { intr; } some_other_intr;

} some_intr_reg;
reg {

field {} a;
} some_status_reg;
some_satus_reg.a->next = some_intr_reg->intr;
44 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

44 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
9. Register file component

A register file is as a logical grouping of one or more register and register file instances;. The register file
provides address allocation support, which is useful for introducing an address gap between registers. The
only difference between the register file component (regfile) and the addrmap component (see Clause 10)
is an addrmap defines an RTL implementation boundary where the regfile does not. Consequently, all the
address allocation support described in this clause also applies to address maps. Since addrmaps define a
implementation block boundary, there are some specific properties that are only specified for address maps
(see Clause 10) and not specified for regfiles.

9.1 Defining and instantiating register files

Register file components have the same definition as other SystemRDL components; see 5.1.1. Register
files introduce the concepts of address allocation and their supporting operators. These address allocation
operators are applied after the instance name of the component. All addressing in SystemRDL is done based
on byte addresses.

a) A definitive definition of a register (file) instantiation appears as follows.

regfile regfile_name {[regfile_body;]*};

[internal | external] regfile_name regfile_instance [[number]] [addr_alloc];

where

1) regfile_name is the user-specified regfile name.

2) regfile_body is one or more of the following:

i) a valid register file property

ii) a component definition for a field, reg, regfile, signal, or enum component

iii) a component instantiation for a reg, regfile, or signal.

3) regfile_instance is the user-specified name for instantiation of the component.

4) number is a simple decimal or hexadecimal number;
[number] specifies the size of the instantiated component array.

5) addr_alloc is an address allocation operator (see Table 19).

b) An anonymous definition (and instantiation) of a register (file) appears as follows.

[internal | external] [regfile] {[regfile_body;]*}
regfile_instance [[number]] [addr_alloc];

where

1) regfile_body is one or more of the following:

i) a valid register file property

ii) a component definition for a field, reg, regfile, signal, or enum component

iii) a component instantiation for a reg, regfile, or signal.

2) regfile_instance is the user-specified name for instantiation of the component.

3) number is a simple decimal or hexadecimal number;
[number] specifies the size of the instantiated component array.

4) addr_alloc is an address allocation operator whose syntax is specified as follows (see also
Table 19).

[@unsizedNumeric | %= unsizedNumeric] [+=unsizedNumeric]
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 45
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 45

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
When instantiating registers or regfiles in a regfile, the address may be assigned using one of the
address allocation (addr_alloc) operators in Table 19.

9.1.1 Semantics

a) Addresses in SystemRDL are always byte addresses.
b) Within a register file, the only components that can be instantiated shall be a register file, a register,

and/or signal components.
c) At least one register shall be instantiated within a register file.
d) Addresses are assigned in incrementing order.
e) The operator %= is a more localized version of alignment (see Table 20).
f) Only unsizedNumerics may be used for address specification (see Table 4).
g) The += operator is only used when instantiating arrayed reg, regfile or addrmap components.
h) The @ and %= operators are mutually exclusive.
i) A regfile may contain heterogeneous internal, external, and alias registers.
j) A regfile cannot be prefixed by alias. Only individual registers can be aliased..
k) If a regfile is declared internal, all registers in it other than alias registers are coerced to be inter-

nal, regardless of any internal or external declaration on the register instantiations. Similarly, if the
regfile is declared external, all registers are coerced to be external; in this case, aliased registers
need to be handled externally as well. If the regfile is not declared as either, the register instances are
internal, alias, or external according to their individual declarations.

9.1.2 Examples

The following set of examples demonstrate the usage of the operators defined in Table 19. The final
addresses (as indicated in the comments in the example) are valid for an addressing mode called regalign,
which is the default addressing mode (see Clause 10), with the default regwidth=32.

Example 1

Using the @ operator.

regfile example {
reg some_reg { field {} a; };

some_reg a @0x0;
some_reg b @0x4;
some_reg c; // Implies address of 8

// Address 0xC is not implemented or specified
some_reg d @0x10;

};
};

Table 19—Address allocation operators

Property Implementation/Application

@ unsizedNumeric Specifies a specific address for the component instance.

+= unsizedNumeric Specifies the address increment when instantiating an array of components (con-
trols the spacing of the components). The address increment is relative to the previ-
ous instance’s address.

%= unsizedNumeric Specifies the alignment of the next address when instantiating a component (con-
trols the alignment of the components). The address increment is relative to the
previous instance’s address.
46 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

46 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Example 2

Using the += operator.

regfile example {
reg some_reg { field {} a; };
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....
some_reg b[10] @0x100 += 0x10; // These will consume 160-12 bytes of space

// Address 0x100 to 0x103, 0x110 to 0x113,....
};

Example 3

Using the %= operator.

regfile example {
reg some_reg { field {} a; };
some_reg a[10]; // So these will consume 40 bytes

// Address 0,4,8,C....
some_reg b[4] @0x100 += 0x10; // These will consume 64-12 bytes of space

// Address 0x100 to 0x103, 0x110 to 0x113,....
some_reg c %=0x80; // This means ((address % 0x80) == 0))

// So this would imply an address of 0x180 since
// that is the first address satisfying address>=0x134
// and ((address % 0x80) == 0)

};

9.2 Register file properties

Table 20 lists and describes the register file properties.

9.2.1 Semantics

a) All alignment values shall be a power of two (1, 2, 4, etc.) and shall be in units of bytes.
b) The default for alignment is the address (of the register file) aligned to the width of the component

being instantiated (e.g., the address of a 64-bit register is aligned to the next 8-byte boundary).
c) The sharedextbus property is only relevant when dealing with multiple external components.
d) If a register file instance is not explicitly assigned an address, an application needs to automatically

assign the address.

9.2.2 Example

This example shows an application of register file component properties.

Table 20—Register file properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

alignment Specifies alignment of all instantiated components in the associated reg-
ister file.

unsized-
Numeric

No

sharedext-
bus

Forces all external registers to share a common bus. boolean No
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 47
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 47

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
regfile fifo_rfile {
alignment = 8;
reg {field {} a;} a; // Address of 0
reg {field {} a;} b; // Address of 8. Normally would have been 4

};
regfile {

external fifo_rfile fifo_a;// Single regfile instance
external fifo_rfile fifo_b[64]; // Array of regfiles

sharedextbus; // Create a common external bus for both of these instantiations
// rather than separate external interfaces

} top_regfile;
48 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

48 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
10. Address map component

An address component map (addrmap) contains registers, register files, and/or other address maps and
assigns a virtual address or final addresses; this map defines the boundaries of an implementation (e.g.,
RTL). A virtual address is used on an address map that is intended to be used as a component in a higher-
level, or hierarchical, address map. A final address is used for the top-level address map (one that is not
contained in any other address maps). There is no difference in how addresses are specified. All addresses
are virtual until the root of the tree is reached. Address allocation support in addrmaps is identical to
regfiles (see Clause 9), except for the exceptions noted in this clause.

10.1 Introduction

During generation, the address map can be converted into an HDL module. All registers and fields
instantiated within an address map file shall be generated within this module. Therefore, some properties are
only valid for addrmaps and not for regfiles. Other than these properties and their suggested behavior, there
is no difference between address maps and register files.

10.2 Defining and instantiating address maps

Address map components have the same definition and instantiation syntax as other SystemRDL
components; see 5.1. The address allocation operators are shown in Table 19.

10.2.1 Semantics

a) The components instantiated within an address map shall be registers, register files, or address maps.
b) At least one register, register file, or address map shall be instantiated within an address map.
c) If a register, register file, or address map instance is not explicitly assigned an address, a compiler

implementing SystemRDL needs to automatically assign the address. This address is determined by
the alignment and addressing properties (see Table 19), and the += and %= operators (see
Table 21).

10.2.2 Example

See the examples in 9.1.2.

10.3 Address map properties

A compiler generating an implementation based on SystemRDL has to create an external interface for each
external component created. The sharedextbus property can be used to combine multiple external
components into a single interface.

The other critical aspect to understand about address maps is how the global addressing modes work. There
are three addressing modes defined in SystemRDL: compact, regalign, and fullalign.

a) compact
Specifies the components are packed tightly together while still being aligned to the accesswidth
parameter.

Example 1

Sets accesswidth=32
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 49
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 49

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
addrmap some_map {
accesswidth=32;
addressing=compact;

reg { field {} a; } a; // Address 0
reg { regwidth=64; field {} a; } b; // Address 4
reg { field {} a; } c[20] // Address 0xC - Element 0

// Address 0x10 - Element 1
 // Address 0x14 - Element 2

};

Example 2

Sets accesswidth=64

addrmap some_map {
accesswidth=64;
addressing=compact;

reg { field {} a; } a; // Address 0
reg { regwidth=64; field {} a; } b; // Address 8
reg { field {} a; } c[20] // Address 0x10 - Element 0

// Address 0x14 - Element 1
 // Address 0x18 - Element 2

};

b) regalign
Specifies the components are packed so each each component's start
address is a multiple of its size (in bytes). Array elements are aligned according to the individual ele-
ment's size (this results in no gaps between the array elements). This generally results in simpler
address decode logic.

Example 3

Uses the default accesswidth of 32

addrmap some_map {
addressing = regalign;

reg { field {} a; } a; // Address 0
reg { regwidth=64; field {} a; } b; // Address 8
reg { field {} a; } c[20] // Address 0x10

// Address 0x14 - Element 1
 // Address 0x18 - Element 2

};

c) fullalign
The assigning of addresses is similar regalign, except for arrays. The alignment value for the first
element in an array is the size in bytes of the whole array (i.e., the size of an array element multiplied
by the number of elements), rounded up to nearest power of two. The second and subsequent ele-
ments are aligned according to their individual size (so there are no gaps between the array ele-
ments).

Example 4

Uses the default accesswidth of 32
50 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

50 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
addrmap some_map {
addressing = fullalign;

reg { field {} a; } a; // Address 0
reg { regwidth=64; field {} a; } b; // Address 8
reg { field {} a; } c[20] // Address 0x80 - Element 0

// Address 0x84 - Element 1
 // Address 0x88 - Element 2

};

Table 21 describes the address map properties.

10.3.1 Semantics

a) The default for the alignment shall be the address is aligned to the width of the component being
instantiated (e.g., the address of a 64-bit register is aligned to the next 8-byte boundary).

b) All alignment values shall be a power of two (1, 2, 4, etc.) and shall be in units of bytes.
c) The sharedextbus property is only relevant when dealing with multiple external components.
d) regalign is identical to compact, except when dealing with regfiles or addrmaps. If an array of

components is 256 items deep and 8 bytes wide, then the next address is (addr[2:0] == 0) and
it is only aligned to the size of the regfile, not the total size of the array.

e) fullalign is identical to compact, except when dealing with regfiles or addrmaps. If an array of
components is 256 items deep and 8 bytes wide, then the next address is aligned to 256*8 or 2048.

f) rsvdsetX does not effect SystemRDL generated implementations; it can be used to verify legacy
designs which do not have consistent data values for reserved fields.

g) msb0 and lsb0 are mutually exclusive.
h) msb0 and lsb0 are required for address maps that use relative size versus explicit indexes for fields

in registers.

Table 21—Address map properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

alignment Specifies alignment of all instantiated components in the address map. unsized-
Numeric

No

sharedext-
bus

Forces all external registers to share a common bus. boolean No

bigendian Uses big-endian architecture in the address map. boolean Yes

littleendian Uses little-endian architecture in the address map. boolean Yes

addressing Controls how addresses are computed in an address map. address-
ingType

No

rsvdset The read value of all fields not explicitly defined is set to 1 if rsvdset is
True; otherwise, it is set to 0.

boolean No

rsvdsetX The read value of all fields not explicitly defined is unknown if rsvd-
setX is True. rsvdsetX takes precedence over rsvdset.

boolean No

msb0 Specifies register bit-fields in an address map are defined as 0:N versus
N:0. This property effects all fields in an address map.

boolean No

lsb0 Specifies register bit-fields in an address map are defined as N:0 versus
0:N. This property effects all fields in an address map. This is the
default.

boolean No
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 51
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 51

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
i) msb0 and lsb0 are also required on address maps that instance registers defined in the global scope.
j) The bigendian and littleendian properties are used for controlling byte ordering in generated code

and have no effect on bit ordering or the SystemRDL code itself. These properties are purely infor-
mation for a back-end generator.

10.3.2 Example

See the examples shown in 10.3.

10.4 Defining bridges or multiple view address maps

There are often scenarios in modern designs where a register needs to be connected to two or more different
buses and accessed differently; Table 22 lists and describes these address map bridge properties.

10.4.1 Semantics

a) To create a bridge, use a parent address map with a bridge property which contains two or more sub
address maps representing the different views.

b) arbiter specifies the HDL module used to arbitrate between control interfaces in a bridge.

10.4.2 Example

This example below shows a bridge between two bus protocols.

addrmap some_bridge { // Define a Bridge Device
desc="overlapping address maps with both shared register space and
orthogonal register space";
bridge; // This tells the compiler the top level map contains other maps
arbiter = "round_robin"; // This will instance external verilog module

// round_robin as the arbiter
 reg status {// Define at least 1 register for the bridge

shared; // Shared property tells compiler this register
// will be shared by multiple addrmaps

field {
 hw=rw;
 sw=r;
 } stat1 = 1'b0;
 };

 reg some_axi_reg {
 field {
 desc="credits on the AXI interface";
 } credits[4] = 4'h7; // End of field: {}
 }; // End of Reg: some_axi_reg

Table 22—Bridge properties

Property Implementation/Application Type Dynamica

aIndicates whether a property can be assigned dynamically.

bridge Defines the parent address map as being a bridge. This shall only be
applied to the root address map which contains the different views of
the sub address maps.

boolean No

arbiter Specifies the arbiter to be used between the different software interfaces
to the register. This shall only be applied to an address map.

boolean No
52 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

52 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
 reg some_ahb_reg {
 field {

 desc="credits on the AHB Interface";
 } credits[8] = 8'b00000011 ;
 };

addrmap {
littleendian;

some_ahb_reg ahb_credits; // Implies addr = 0
status ahb_stat @0x20; // explicitly at address=20
ahb_stat.stat1->desc = "bar"; // Overload the registers property in

// this instance
} ahb;

addrmap { // Define the Map for the AXI Side of the bridge
bigendian; // This map is big endian
some_axi_reg axi_credits; // Implies addr = 0
status axi_stat @0x40; // explicitly at address=40

 axi_stat.stat1->desc = "foo"; // Overload the registers property
// in this instance

} axi;
}; // Ends addrmap bridge
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 53
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 53

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
54 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

54 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
11. User-defined properties

User-defined properties enable the creation of custom properties that extend the structural component types
in a SystemRDL design. A user-defined property specifies one or more structural component types (e.g.,
reg) to which it can be bound, has a single value-type (e.g., ref), and (optionally) a default value. Unlike
built-in properties, user-defined properties are not automatically bound to every instance of the specified
component’s type; instead they need to be bound per instance and/or component definition.

11.1 Defining user-defined properties

A user-defined property definition appears as follows.
property property_name {attribute; [attribute;]*};

where
a) property_name specifies the new property.
b) attributes are specified as attribute=value pairs, e.g., type=number (see 5.1.3.1).

Component attribute values can also be combined by using the | symbol.

Table 23 specifies which attributes can be set in a user-defined property. Table 24 details each of the
possible user-defined property types.

11.1.1 Semantics

a) User-defined properties are global and defined in the root scope.
b) A user-defined property definition shall also define to which components the property can bind.
c) A user-defined property definition shall include its type definition (see Table 24).
d) The default attribute can result in some inconsistencies relative to the behavior of built-in properties

to the language, especially relating to boolean properties. Built-in booleans in SystemRDL are
inherently defaulted to false. With user-defined boolean properties, the default can be specified to

Table 23—Attributes for user-defined properties

Attribute Description Allowable values

component The structural component type with which the prop-
erty is associated. This attribute shall be one or more
of the allowable values. If more than one value is
specified the | operator (inclusive OR) is used.

field, reg, regfile, addrmap, or all.

type The type of the property. This attribute shall be one of
the allowable values. See Table 24.

string, number, boolean, or ref.

default The default value for the property. Optional; needs to match the type of
the property.

Table 24—User-defined types

Type Description Example

number A numeric value (see Table 4). 0x10 or 8h’8C

string Any valid string (see Table 4). “Some String”

boolean A two-state value (see Table 4). true or false

ref A reference to a component instance or an instance’s
property (see Table 4).

chip.block.reg.field
or -> outback_steakhouse
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 55
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 55

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
be true or false. A default of false creates an inconsistency with respect to SystemRDL property
assignments.

11.1.2 Example

This example defines several user-defined properties.

property a_map_p { type = string; component = addrmap | regfile; };

property some_bool_p { type = boolean; component = field; default = false; };

11.2 Assigning (and binding) user-defined properties

User-defined properties may be assigned like general properties (see 5.1.3).

A user-defined property is bound when it is instantiated within a component definition or assigned a value.

11.2.1 Semantics

a) User-defined properties can be dynamically assigned to any component in its component attribute.

b) It shall be an error if there is an attempt to assign a user-defined property in a component that is not
specified in its component attribute.

c) User-defined properties can be bound to a component without setting a value.

11.2.2 Example

This example shows the definition and assignment of several user-defined properties.

property a_map_p { type = string; component = addrmap | regfile; };

property some_bool_p { type = boolean; component = field; default = false; };

property some_ref_p { type = reference; component = all; };

property some_num_p { type = number; default = 0x10; component = field | reg
| regfile };

addrmap foo {

reg{

field { some_bool_p; } field1; // Attach some_bool_p to the field

 // with a value of false;

field { some_bool_p = true; some_num_p; } field2;

// Attach some_bool_p to the field with a value of true;

field1->some_ref_p = field2; // create a reference

 some_num_p = 0x20; // Assign this property to the reg and give it value

} bar;

a_map_p; // The property has been bound to the map but it has not been

// assigned a value so its value is undefined

};
56 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

56 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
12. Enumeration (bit-field encoding)

12.1 Introduction

An enumeration is a set of named values that provides mnemonic names for field values. There are no
properties for the enum component beyond the universal properties described in 5.2.1.

12.2 Defining enumerations

Unlike other SystemRDL components, bit-field encodings are not instantiated, rather they are assigned to a
field’s encode property (see 7.10). Bit-field encodings can only be defined definitively; anonymous
definitions are not allowed.

An enum component definition appears as follows.

enum enum_name { encoding; [encoding;]* };

where

a) enum_name is a user-defined name for the enumeration

b) encoding is specified as follows

mnemonic_name = value [{{universal_property;}*}];

where

1) mnemonic_name is a user-defined name for a specific value. This name shall be unique within
a given enum.

2) value shall be a sizedNumeric.

3) All values shall be the same size.

4) All values shall be unique.

5) universal_property is as defined in 5.2.1.

Example

This is an example of bit-field encoding.

enum myBitFieldEncoding {

first_encoding_entry = 8’hab;

second_entry = 8’hcd {

name = “second entry”;

};

third_entry = 8’hef {

name = “third entry, just like others”;

desc = “this value has a special documentation”;

};

fourth_entry = 8’b10010011;

};
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 57
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 57

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
58 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

58 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
13. Preprocessor directives

SystemRDL provides for file inclusion and text substitution through the use of preprocessor directives.
There are two phases of preprocessing in SystemRDL: embedded Perl preprocessing and a more traditional
Verilog-style preprocessor. The embedded Perl preprocessing is handled first and the resulting substituted
code is passed through a traditional Verilog-style preprocessor.

13.1 Embedded Perl preprocessing

The SystemRDL preprocessor provides more power than traditional macro-based preprocessing without the
dangers of unexpected text substitution. Instead of macros, SystemRDL allows designers to embed snippets
of Perl code into the source.

13.1.1 Semantics

a) Perl snippets shall begin with <% and be terminated by %>; between these markers any valid Perl
syntax may be used.

b) Any SystemRDL code outside of the Perl snippet markers is equivalent to the Perl print 'RDL
code' and the resulting code is printed directly to the post-processed output.

c) <%=$VARIABLE%> (no whitespace is allowed) is equivalent to the Perl print $VARIABLE.
d) The resulting Perl code is interpreted and the result is sent to the traditional Verilog-style preproces-

sor.

13.1.2 Example

This example shows the use of the SystemRDL preprocessor.

// An example of Apache’s ASP standard for embedding Perl
reg myReg {

<% for($i = 0; $i < 6; $i += 2) { %>
myField data<%=$i%> [<%=$i+1%>:<%=$i%>];
<% } %>

};

When processed, this is replaced by the following.

// Code resulting from embedded Perl script
reg myReg {

myField data0 [1:0];
myField data2 [3:2];
myField data4 [5:4];

};

13.2 Verilog-style preprocessor

SystemRDL also provides for file inclusion and text substitution through the use of Verilog-style
preprocessor directives. A SystemRDL file containing file inclusion directives shall be equivalent with one
containing each included file in-lined at the place of its inclusion directive. A SystemRDL file containing a
text substitution directive shall be equivalent to one containing the text resolved according to the text
substitution directive in-lined at the place of the text inclusion directive.

The Verilog-style preprocessing always takes any embedded Perl preprocessing output as its source.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 59
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 59

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
13.2.1 Verilog-style preprocessor directives

These directives are a subset of those defined by the SystemVerilog (IEEE Std 1800™) and Verilog (IEEE
Std 1364™) standards to allow SystemRDL source files to include other files and provide protection from
definition collisions due to the multiple inclusions of a file. The text macro define directives are defined by
the SystemVerilog standard and the other directives are defined by the Verilog standard.

Table 25 shows which preprocessor are included in SystemRDL.

All other directives defined by the SystemVerilog and Verilog standards are removed during preprocessing,
i.e., ‘begin_keywords, ‘celldefine, ‘default_nettype, ‘end_keywords,
‘endcelldefine, ‘nounconnected_drive, ‘pragma, ‘resetall, ‘timescale, and
‘unconnecteded_drive.

SystemRDL does not support the SystemVerilog predefined include files or the SystemVerilog or
Verilog languages beyond the directives given in Table 25.

13.2.2 Limitations on nested file inclusion

Nested includes are allowed, although the following restrictions are placed on this.
a) The number of nesting levels for include files shall be bounded.
b) Implementations may limit the maximum number of levels to which include files can be nested, but

the limit shall be at least 15 levels.

Table 25—Verilog-style preprocessor directives

Directive Defining standard Description

`define SystemVerilog Text macro definition

`if Verilog Conditional compilation

`else Verilog Conditional compilation

`elsif Verilog Conditional compilation

`ifdef Verilog Conditional compilation

`ifndef Verilog Conditional compilation

`include Verilog File inclusion

`line Verilog Source filename and number

`undef Verilog Undefine text macro
60 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

60 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
14. Advanced topics in SystemRDL

The concept of signals was introduced in Clause 6 and the signal properties were described in 6.2. Signals,
in addition to providing a means of interconnecting components in SystemRDL, have a very critical role in
controlling resets for generated hardware. This clause explains the advanced signal properties (see Table 7)
and their application.

14.1 Application of signals for reset

A SystemRDL compiler, by default, creates a single reset signal (resetsignal) for a generated RTL block
called RESET. This reset signal shall be positive active and is used to synchronously reset flip-flops.
Clearly, there are many other ways to do resets in hardware and this is where the advanced use of signals
applies. Signal components have properties, such as sync, async, activelow, and activehigh, which are used
to describe the use behavior of the signal, but when that signal is specified as a reference to the resetsignal
property of a field then they effect the field’s reset behavior as well. A signal does not become a reset signal
until a signal instance is referenced by a field’s resetsignal property. The following signal properties can
also be used to accommodate more complex scenarios.

a) The field_reset property specifies all fields in the address map shall be reset by the signal to which
this property is attached unless the field instance has a resetsignal property specified. This property
cannot be specified on more than one signal instance in an address map and the address map’s non-
address map instances. This does not mean, however, that all fields then have to be reset by this sig-
nal. The user can still use the resetsignal property to override the default for specific fields.

b) The cpuif_reset property specifies the reset for the CPU interface to which the registers are con-
nected. The designer may wish to be able to reset the CPU interface/bus while retaining the values of
the registers. In the default case, the fields and the CPU interface/bus are both reset by the default
signal. This property gives the designer the ability to customize such behavior. This property cannot
be specified on more than one signal instance in an address map and its address maps non-address
map instances.

The following examples highlight two different ways to customize reset behavior.

Example 1

This example shows usage of resetsignal.

signal { activelow; async; } reset_l; // Define a single bit signal

reg {

field {} field=0; // This field is reset by the default IMPLIED reset signal

 // which is named RESET and is activehigh and sync

field {

resetsignal = reset_l;

} field2=0; // This field is now reset by reset_l and the generated flops

// will be active low and asynchronously reset.

} some_reg_inst;

Here the resetsignal property is used to customize the reset behavior. Although this approach is always
valid, it can be cumbersome if a user wishes to vary from the default significantly with a large number of
fields. In those cases, field_reset and cpuif_reset can be used to accommodate those more complex
scenarios, as shown in Example 2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 61
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 61

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Example 2

This example shows usage of cpuif_reset and field_reset from the PCI Type 0 Config Header.

signal {
 name="PCI Soft Reset";
 desc="This signal is used to issue a soft reset to the PCI(E) device";
 activelow; // Define this signal is active low
 async; // define this reset type is asynchronous
 field_reset; // define this signal to reset the fields by default

 // This signal will be hooked to registers PCI defines as NOT Sticky.
// This means they will be reset by this signal.

} pci_soft_reset;

 signal {
 name="PCI Hard Reset";
 desc="This signal the primary hard reset signal for the PCI(E) device";
 async; // define this reset type is asynchronous
 activelow; // Define this signal as active low
 cpuif_reset; // This signal will be or'd with the PCI Soft Reset Signal

// to form the master hard reset which will reset all flops.
// The soft reset signal above will not reset flops that PCI

 // defines as STICKY.
 } pci_hard_reset;

reg { // PCIE_REG_BIST
 name = "BIST";
 desc = "This optional register is used for control and status of BIST.

Devices that do not support BIST always returns a value of 0
(i.e., treat it as a reserved register). A device whose

 BIST is invoked shall not prevent normal operation of the PCI bus.
Figure 6-4 shows the register layout and Table 6-3 describes the
bits in the register.";

 regwidth = 8;

 field {
 name = "cplCode";
 desc = "A value of 0 means the device has passed its test. Non-zero values
 mean the device failed. Device-specific failure codes can be encoded
 in the non-zero value.";
 hw = rw; sw = r;
 fieldwidth = 4;
 } cplCode [3:0];// since this signal has no resetsignal property it defaults

// to using the signal with field reset which is
// the pci_soft_reset signal

 field {
 name = "start";
 desc = "Write a 1 to invoke BIST. Device resets the bit when BIST is
 complete. Software should fail the device if BIST is not complete

after 2 seconds.";
 hw = rw; sw = rw;
 fieldwidth = 1;
 } start [6:6]; // resetsignal is also pci_soft_reset
62 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

62 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
 field {
 name = "capable";

desc = "Return 1 if device supports BIST. Return 0 if the device is not BIST
 capable.";
 hw = rw; sw = rw;
 fieldwidth = 1;
 resetsignal = pci_hard_reset;
 } capable [7:7]=0; // resetsignal is explicitly specified as pci_hard_reset

 } PCIE_REG_BIST;

14.2 Understanding hierarchical interrupts in SystemRDL

SystemRDL also provides the capability to create a hierarchy of interrupts. This can be useful for describing
a complete interrupt tree of a design (see Figure 1).

Figure 1—Hierarchical interrupt structure

Within each level of the hierarchical description, interrupt registers and enable registers can be used to gate
the propagation of interrupts. The detailed diagram for a block depicted in the hierarchy shown in Figure 1 is
represented by the example shown in Figure 2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 63
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 63

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Figure 2—Block interrupt example

Multiple levels of hierarchy are needed to effectively to demonstrate this interrupt tree. The example shown
in the following subclauses is quite long (and broken into multiple code segments), but tries to show the use
of the interrupt constructs in a practical application.

14.2.1 Example structure and perspective

The (example) SystemRDL code needed to match the hierarchical interrupt structure shown in Figure 1
needs to contain four leaf blocks. Each of these leaf blocks needs to contain three interrupt events. These
lowest level events are stickybit and the OR of the three interrupts propagates that interrupt to the next level
in the tree. This OR’d output indicates some block in the design actually has a interrupt pending. Finally, the
four blocks are aggregated to create a single interrupt pin. Enables are used throughout this example, but it
could just as easily be a mask instead.

This example is broken into sections to make it more readable. The previous description and example are
built from a bottom-up perspective.

Considering this example from a software driver’s viewpoint (from the top down), there are two top-level
signals that are emitted to software: one indicates a interrupt of some priority has occurred; the other
indicates an interrupt of another priority has occurred. These could map to fatal and non-fatal interrupts or
anything else the user desires. For each level on the tree, there is enabling so the software can easily disable/
enable these interrupts at each level of the tree.

So the software begins the process by seeing if an intr or halt is set in the top-level register. Once that has
been determined, the software needs to read the master interrupt register and determine in which block(s) the
interrupt has occurred. Once that has been determined, the leaf interrupt for that block can be read to
determine which specific interrupt bits have been set. The software can then address the leaf interrupts and
clear them when appropriate. Since the master level and global level are defined as nonsticky in this
example, the software only needs to clear the leaf and then the next two levels of the tree will clear
themselves automatically.
64 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

64 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
14.2.2 Code snippet 1

The first code snippet section defines a basic block’s interrupt register, which contains three single-bit
interrupts. It also has a single multi-bit sticky field used for capturing the cause of the multi-bit error
correcting code interrupt. These interrupt events are created by hardware and cleared by software. The
software then needs to do a write one to clear. Notice how the default keyword is used to reduce the size of
the code.

//--
// Block Level Interrupt Register
//--

reg block_int_r {
name = "Example Block Interrupt Register";
desc = "This is an example of an IP Block with 3 int events. 2 of these

are non-fatal and the third event multi_bit_ecc_error is fatal";

default hw=w; // HW can Set int only
default sw=rw; // SW can clear
default woclr; // Clear is via writing a 1

field {
desc = "A Packet with a CRC Error has been received";
level intr;

} crc_error = 0x0;

field {
desc = "A Packet with an invalid length has been received";

 level intr;
} len_error = 0x0;

field {
desc="An uncorrectable multi-bit ECC error has been received";
level intr;

} multi_bit_ecc_error = 0 ;

field {
desc="Master who was active when ECC Error Occurred";
sticky;

} active_ecc_master[7:4] = 0; // Example of multi-bit sticky field
// This field is not an intr

}; // End of Reg: block_int_r

14.2.3 Code snippet 2

This next code snippet only defines the enable register associated with the interrupt register from 14.2.2—it
does not instantiate the register or connect it up at this point.

reg block_int_en_r {
name = "Example Block Interrupt Enable Register";
desc = "This is an example of an IP Block with 3 int events";

default hw=na; // HW can't access the enables
default sw=rw; // SW can control them

field {
desc = "Enable: A Packet with a CRC Error has been received";

} crc_error = 0x1;
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 65
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 65

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
field {
desc = "Enable: A Packet with an invalid length has been received";

} len_error = 0x1;

field {
desc = "Enable: A multi-bit error has been detected";

} multi_bit_ecc_error = 0x0;
}; // End of Reg: block_int_en_r

14.2.4 Code snippet 3

This next code snippet only defines a second-priority enable register associated with the interrupt register
from 14.2.2—it does not instantiate the register or connect it up at this point.

reg block_halt_en_r {
name = "Example Block Halt Enable Register";
desc = "This is an example of an IP Block with 3 int events";

default hw=na; // HW can't access the enables
default sw=rw; // SW can control them

field {
desc = "Enable: A Packet with a CRC Error has been received";

} crc_error = 0x0; // not a fatal error do not halt

field {
desc = "Enable: A Packet with an invalid length has been received";

} len_error = 0x0; // not a fatal error do not halt

field {
desc = "Enable: A Packet with an invalid length has been received";

} multi_bit_ecc_error = 0x1; // fatal error that will
// cause device to halt

}; // End of Reg: block_halt_en_r

14.2.5 Code snippet 4

This next code snippet defines the next level up interrupt register (called the master interrupt register). Each
of the outputs of the leaf block’s interrupt registers will connect into this block later. This section is made
nonsticky, so the leaf interrupts are automatically cleared by this register.

//--
// Master Interrupt Status Register
//--

reg master_int_r {
name = "Master Interrupt Status Register";
desc = "This register contains the status of the 4 lower Module interrupts.

Also an interrupt signal (myMasterInt) is generated which is the 'OR'
of the four Module interrupts. A Halt signal is also generated which
represents the bitwise or the masked/enabled halt bits";

default nonsticky intr; // Unless we want to have to clear this separately
// from the leaf intr this should be non sticky

default hw=w; // HW normally won't want to access this but it could
default sw=r; // Software can just read this. It clears the leaf intr's

// to clear this
66 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

66 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
field {
desc = "An interrupt has occurred with ModuleD.

Software must read the ModuleD Master Interrupt Register
in order to determine the source of the interrupt.";

} module_d_int[3:3] = 0x0;

field {
desc = "An interrupt has occurred with ModuleC.

Software must read the ModuleC Master Interrupt Register
in order to determine the source of the interrupt.";

} module_c_int[2:2] = 0x0;

field {
desc = "An interrupt has occurred with ModuleB.

Software must read the ModuleB Interrupt Register
in order to determine the source of the interrupt.";

} module_b_int[1:1] = 0x0;

field {
desc = "An interrupt has occurred with ModuleA.

Software must read the ModuleA Master Interrupt Register
in order to determine the source of the interrupt.";

} module_a_int[0:0] = 0x0;
};

14.2.6 Code snippet 5

This next code snippet defines the enable register for the master interrupt register set in 14.2.5.

//
// The following is the accompanying enable register. Since the combinatorial
// logic for processing the interrupt is internal to the generated verilog,
// there's no need for an external port - which is realized by assigning "na"
// to the hw attribute of the specific field. This could have been defined as
// a mask register just as easily...
//

//--
// Interrupt Enable Register
//--

reg master_int_en_r {
name = "Master Interrupt Enable Register";
desc = "Configurable register used in order to enable the corresponding

interrupts found in myMasterInt register.";

default hw = na;
default sw = rw;

field {
desc = "Interrupt enable for ModuleD Interrupts. 1 = enable, 0 = disable";

} module_d_int_en[3:3] = 0x0;

field {
desc = "Interrupt enable for ModuleC Interrupts. 1 = enable, 0 = disable";

} module_c_int_en[2:2] = 0x0;
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 67
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 67

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
field {
desc = "Interrupt enable for ModuleB Interrupts. 1 = enable, 0 = disable";

} module_b_int_en[1:1] = 0x0;

field {
desc = "Interrupt enable for ModuleA Interrupts. 1 = enable, 0 = disable";

} module_a_int_en[0:0] = 0x0;
};

14.2.7 Code snippet 6

This next code snippet defines an alternate enable register for the master interrupt register set in 14.2.5.

//--
// Halt Enable Register
//--

// The halt en is another enable or mask that could be used to generate an
// alternate signal like a halt that represents a fatal error in the system or
// some other event NOTE: It does not have to mean fatal as the name implies
// its just another priority level for interrupts...

reg master_halt_en_r {
name = "Master Halt Enable Register";
desc = "Configurable register used in order to enable the corresponding

interrupts found in myMasterInt register.";

default hw = na;
default sw = rw;

field {
desc = "Halt enable for ModuleD Interrupts. 1 = enable, 0 = disable";

} module_d_halt_en[3:3] = 0x0;

field {
desc = "Halt enable for ModuleC Interrupts. 1 = enable, 0 = disable";

} module_c_halt_en[2:2] = 0x0;

field {
desc = "Halt enable for ModuleB Interrupts. 1 = enable, 0 = disable";

} module_b_halt_en[1:1] = 0x0;

field {
desc = "Halt enable for ModuelA Interrupts. 1 = enable, 0 = disable";

} module_a_halt_en[0:0] = 0x0;
};

14.2.8 Code snippet 7

Now, the third level up from the leaf in the interrupt tree needs to be addressed (called the global interrupt
register). This register distills down the fact there is an interrupt present in at least one of the four blocks into
a single interrupt signal and a single halt signal.

//--
// Global Interrupt Status Register
//--
68 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

68 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
// This takes the block int which feeds the master int and then distills it
// down one more level so we end up with a single bit intr and single bit halt...

//--
// Global Interrupt/Halt Enable Register
//--

reg final_en_r {
name = "My Final Enable Register";
desc = "This enable allows all interrupts/halts to be suppressed

with a single bit";

default hw = na;
default sw = rw;

field {
desc = "Global Interrupt Enable. 1 = enable, 0 = disable";

} global_int_en = 0x0;

field {
desc = "Global Halt Enable. 1 = enable, 0 = disable";

} global_halt_en = 0x0;

};

reg final_int_r {
name = "My Final Int/Halt Register";
desc = "This distills a lower level interrupts into a final bit than can be

masked";
default sw = r; // sw does not need to clear global_int

// (global_int is of type final_int_r)
// instead it clears itself when all master_int intr
// bits get serviced

default nonsticky intr;
default hw = w; // w needed since dyn assign below implies interconnect to hw

// global_int.global_int->next = master_int->intr;

field {
desc = "Global Interrupt";

} global_int = 0x0;

field {
desc = "Global Halt";

} global_halt = 0x0;
};

14.2.9 Code snippet 8

Once all the components for the three-level interrupt tree have been defined, an address map needs to be
defined and any previously defined components need to be instantiated and interconnected. This section
does all this—it is the most critical part of the example to understand.

addrmap int_map_m {

name = "Sample ASIC Interrupt Registers";
 desc = "This register map is designed how one can use interrupt concepts

effectively in SystemRDL";
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 69
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 69

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
// Leaf Interrupts

 // Block A Registers

 block_int_r block_a_int; // Instance the Leaf Int Register
 block_int_en_r block_a_int_en; // Instance the corresponding Int Enable

// Register
 block_halt_en_r block_a_halt_en; // Instance the corresponding halt enable

// register

 // This block connects the int bits to their corresponding
// int enables and halt enables

 //
 block_a_int.crc_error->enable = block_a_int_en.crc_error;
 block_a_int.len_error->enable = block_a_int_en.len_error;
 block_a_int.multi_bit_ecc_error->enable =

block_a_int_en.multi_bit_ecc_error;

 block_a_int.crc_error->haltenable = block_a_halt_en.crc_error;
 block_a_int.len_error->haltenable = block_a_halt_en.len_error;
 block_a_int.multi_bit_ecc_error->haltenable =

block_a_halt_en.multi_bit_ecc_error;

14.2.10 Code snippet 9

14.2.9 instances the leaf interrupt, instances its enable and halt enable, and assigns enable and haltenable
properties to reference the respective enable registers. This code snippet repeats this process three more
times: one each for blocks b, c, and d.

 // Block B Registers

 block_int_r block_b_int @0x100;
 block_int_en_r block_b_int_en;
 block_halt_en_r block_b_halt_en;

 block_b_int.crc_error->enable = block_b_int_en.crc_error;
 block_b_int.len_error->enable = block_b_int_en.len_error;
 block_b_int.multi_bit_ecc_error->enable =

block_b_int_en.multi_bit_ecc_error;

 block_b_int.crc_error->haltenable = block_b_halt_en.crc_error;
 block_b_int.len_error->haltenable = block_b_halt_en.len_error;
 block_b_int.multi_bit_ecc_error->haltenable =

block_b_halt_en.multi_bit_ecc_error;

 // Block C Registers

 block_int_r block_c_int @0x200;
 block_int_en_r block_c_int_en;
 block_halt_en_r block_c_halt_en;

 block_c_int.crc_error->enable = block_c_int_en.crc_error;
 block_c_int.len_error->enable = block_c_int_en.len_error;
 block_c_int.multi_bit_ecc_error->enable =

block_c_int_en.multi_bit_ecc_error;
70 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

70 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
 block_c_int.crc_error->haltenable = block_c_halt_en.crc_error;
 block_c_int.len_error->haltenable = block_c_halt_en.len_error;
 block_c_int.multi_bit_ecc_error->haltenable =

block_c_halt_en.multi_bit_ecc_error;

 // Block D Registers

 block_int_r block_d_int @0x300;
 block_int_en_r block_d_int_en;
 block_halt_en_r block_d_halt_en;

 block_d_int.crc_error->enable = block_d_int_en.crc_error;
 block_d_int.len_error->enable = block_d_int_en.len_error;
 block_d_int.multi_bit_ecc_error->enable =

block_d_int_en.multi_bit_ecc_error;

 block_d_int.crc_error->haltenable = block_d_halt_en.crc_error;
 block_d_int.len_error->haltenable = block_d_halt_en.len_error;
 block_d_int.multi_bit_ecc_error->haltenable =

block_d_halt_en.multi_bit_ecc_error;

14.2.11 Code snippet 10

This code snippet instances the master interrupt register and its associated enables. The interesting part of
this section is how the leaf register’s intr property (which represents the OR of all the interrupts in the leaf
register) are connected together.

 //
 // Master Interrupts
 //

 master_int_r master_int @0x01000;
 master_int_r master_halt ;
 master_int_en_r master_int_en ;
 master_halt_en_r master_halt_en ;

// Associate the INT’s with the EN’s
 master_int.module_d_int->enable = master_int_en.module_d_int_en;

master_int.module_c_int->enable = master_int_en.module_c_int_en;
master_int.module_b_int->enable = master_int_en.module_b_int_en;
master_int.module_a_int->enable = master_int_en.module_a_int_en;
// Associate the HALT’s with the EN’s

 master_halt.module_d_int->haltenable = master_halt_en.module_d_halt_en;
master_halt.module_c_int->haltenable = master_halt_en.module_c_halt_en;
master_halt.module_b_int->haltenable = master_halt_en.module_b_halt_en;
master_halt.module_a_int->haltenable = master_halt_en.module_a_halt_en;

 // Now hook the lower level leaf interrupts to the higher level interrupts

// This connects the Implicit Or from Block A's INT reg after
// masking/enable to the next level up (master)

 master_int.module_a_int->next = block_a_int->intr;

// This connects the Implicit Or from Block B's INT reg after
// masking/enable to the next level up (master)

 master_int.module_b_int->next = block_b_int->intr;
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 71
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 71

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
// This connects the Implicit Or from Block C's INT reg after
// masking/enable to the next level up (master)

 master_int.module_c_int->next = block_c_int->intr;

// This connects the Implicit Or from Block D's INT reg after
// masking/enable to the next level up (master)
master_int.module_d_int->next = block_d_int->intr;

// This connects the Implicit Or from Block A's HALT reg after
// masking/enable to the next level up (master)
master_halt.module_a_int->next = block_a_int->halt;

// This connects the Implicit Or from Block B's HALT reg after
// masking/enable to the next level up (master)

 master_halt.module_b_int->next = block_b_int->halt;

 // This connects the Implicit Or from Block C's HALT reg after
// masking/enable to the next level up (master)

 master_halt.module_c_int->next = block_c_int->halt;

// This connects the Implicit Or from Block D's HALT reg after
// masking/enable to the next level up (master)

 master_halt.module_d_int->next = block_d_int->halt;

14.2.12 Code snippet 11

This final section of the example instantiates a single top-level interrupt register containing a single
interrupt and a single halt signal. This constitutes the final resolved interrupt that has been fully masked/
enabled throughout the tree.

 final_int_r global_int @0x1010;
// Inst the global int/halt register

final_en_r global_int_en @0x1014;
// Inst the global int/halt enable register

 global_int.global_int->enable = global_int_en.global_int_en;
// Associate the INT with the EN

 global_int.global_halt->haltenable = global_int_en.global_halt_en;
// Associate the HALT with the EN

 global_int.global_int->next = master_int->intr;
// Take the or of the 4 blocks in the master
// Int and create one final interrupt

 global_int.global_halt->next = master_halt->halt;
// Take the or of the 4 blocks in the master
// Int and create one final halt

};

14.3 Understanding bit ordering and byte ordering in SystemRDL

Bit ordering and byte ordering are common source of confusion for many engineers. This subclause
discusses the bit ordering and byte ordering rules in SystemRDL and also illustrates their use with some
examples.
72 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

72 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
14.3.1 Bit ordering

The most common bit ordering is called lsb0. This is demonstrated in the scheme below, where the least
significant bit is 0.

Bit: 76543210

Value: 10010110 (decimal 150)

The alternative scheme is called msb0. This is demonstrated in the scheme below, where the least significant
bit is 7.

Bit: 01234567

Value: 10010110 (decimal 150)

In SystemRDL, a user can define address maps using both conventions, but a single addrmap needs to have
homogenous lsb0 or msb0 descriptions. The compiler shall determine lsb0 and msb0 when explicit indices
for a register are defined, e.g., [0:7], but it is not possible to determine the bit order when the first field
uses implicit indices and leaves the choice of assigning final indexes to the compiler.

Example 1

In this case, the first field is explicit and defines the map as msb0, therefore no explicit keyword is needed.

addrmap some_map {
reg {
field f1[12:19] = 8’b10010110;

// In this example its clear the compiler should use
// msb0 mode as the first field infers this by its
// use of explicit indices. Register bit 12 is reset
// to a 1.

field f2[4] = 4’b1010; // f2 is from register bits 8 to 11
// reset value of bit 8 is 1, bit 9 is 0,
// bit 10 is 1, and bit 11 is 0

} reg1;
}

Example 2

In this case, the first field is implicit and the compiler needs to see a keyword to decide bit ordering.

addrmap some_map {
lsb0;
reg {
field f1[8] = 8’b10010110;
// In this example the compiler can’t tell if it’s [7:0] or [0:7]
// without the lsb0 keyword above.
// It could be either bit order.
// Here register bit 0 is reset to a 0.

field f2[4] = 4’b1010; } reg1; // f2 is from register bits 11 to 8
 // reset value of bit 8 is 0, bit 9 is 1,

// bit 10 is 0, and bit 11 is 1

}

Copyright © 2007 The SPIRIT Consortium. All rights reserved. 73
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 73

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
Example 3

In this case, the first field is implicit and the compiler needs to see a keyword to decide bit ordering.

addrmap some_map {

msb0;

reg {

field f1[8] = 8’b10010110;

// In this example the compiler can’t tell if it’s [7:0] or [24:31]

// without the msb0 keyword above.

// The msb0 keyword implies it’s from 24 to 31.

// Here register bit 24 is reset to a 1.

field f2[4] = 4’b1010; // f2 is from register bits 20 to 23

 // reset value of bit 20 is 1, bit 21 is 0,

// bit 22 is 1, and bit 23 is 0

} reg1;

}

14.3.2 Byte ordering

Byte ordering is another common source of confusion. Byte order is often called endianness. In
SystemRDL, two properties are defined for dealing with this: bigendian and littleendian. These properties
do nothing related to the structure of SystemRDL, but they provide information to back-end generators
which are generating bus interfaces. Therefore, these properties are only attached to addrmap blocks since
they define the boundary of a generatable RTL module. SystemRDL’s smallest endian or atomic unit is a
byte and the data unit on which the endianness is performed is controlled by the accesswidth parameter. The
following example uses a 64-bit register with a 32-bit accesswidth, where the words are ordered in a big
endian fashion (per convention) and the bytes are ordered as shown.

Example

If 0x0123456789ABCDEF is assigned a base address of 0x800,

a bigendian bus would address the bytes as:

800 801 802 803 804 805 806 807

01 23 45 67 89 AB CD EF

a littleendian bus would address the bytes as:

800 801 802 803 804 805 806 807

67 45 23 01 EF CD AB 89

Thus, these two properties do not effect bit ordering in a SystemRDL file; instead, they correspond to byte
ordering on output generators.
74 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

74 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Annex A

(informative)

Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B2] IP-XACT release, v1.4, see http://www.spiritconsortium.org/releases/1.4.

[B3] SystemRDL Examples, v1.0, see http://www.spiritconsortium.org/doc_downloads/.

[B4] Endianess References, see http://en.wikipedia.org/wiki/Endianess and
http://3bc.bertrand-blanc.com/endianness05.pdf.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 75
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 75

http://www.spiritconsortium.org/releases/1.4

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
76 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

76 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Annex B

(normative)

Grammar

The following shows lexer grammar based on the ANTLR Parser Generator Reference Manual, Version 2. If
there is a conflict between a grammar element shown anywhere in this Standard and the material in this
annex, the material shown in this annex shall take precedence.

Parser grammar:
root
 : (component_def
 | enum_def
 | explicit_component_inst
 | property_assign
 | property_definition
)*
 EOF
 ;

component_def
 : ("addrmap"
 | "regfile"
 | "reg"
 | "field"
 | "signal"
)
 (id
 |
)
 LBRACE
 (component_def
 | explicit_component_inst
 | property_assign
 | enum_def
)*
 RBRACE
 (anonymous_component_inst_elems
 |
)
 SEMI
 ;

enum_def
 : "enum" id enum_body SEMI
 ;

explicit_component_inst
 : ("external"
 |
)
 ("internal"
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 77
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 77

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
 |
)
 ("alias" id
 |
)
 id component_inst_elem (COMMA component_inst_elem)* SEMI
 ;

property_assign
 : default_property_assign SEMI
 | explicit_property_assign SEMI
 | post_property_assign SEMI
 ;

property_definition
 : "property" id LBRACE property_body RBRACE SEMI
 ;

id
 : ID
 | INST_ID
 ;

property_body
 : property_type
 (property_usage
 (property_default
 |
)
 | property_default property_usage
)
 | property_usage
 (property_type
 (property_default
 |
)
 | property_default property_type
)
 | property_default
 (property_type property_usage
 | property_usage property_type
)
 ;

property_type
 : "type" EQ
 (property_string_type
 | property_number_type
 | property_boolean_type
 | property_ref_type
)
 SEMI
 ;
78 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

78 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
property_usage
 : "component" EQ property_component (OR property_component)* SEMI
 ;

property_default
 : ("default" EQ
 (str
 | num
 | "true"
 | "false"
)
 SEMI)
 ;

property_string_type
 : "string"
 ;

property_number_type
 : "number"
 ;

property_boolean_type
 : "boolean"
 ;

property_ref_type
 : ("addrmap"
 | "reg"
 | "regfile"
 | "field"
 | "ref"
)
 ;

str
 : STR
 ;

num
 : NUM
 ;

property_component
 : ("signal"
 | "addrmap"
 | "reg"
 | "regfile"
 | "field"
 | "all"
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 79
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 79

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
)
 ;

anonymous_component_inst_elems
 : ("external"
 |
)
 component_inst_elem (COMMA component_inst_elem)*
 ;

component_inst_elem
 : id
 (array
 |
)
 (EQ num
 |
)
 (AT num
 |
)
 (INC num
 |
)
 (MOD num
 |
)
 ;

array
 : LSQ num
 (COLON num
 |
)
 RSQ
 ;

instance_ref
 : instance_ref_elem (DOT instance_ref_elem)*
 (DREF property
 |
)
 ;

instance_ref_elem
 : id
 (LSQ num RSQ
 |
)
 ;

property
 : "name"
80 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

80 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
 | "desc"
 | "arbiter"
 | "rset"
 | "rclr"
 | "woclr"
 | "woset"
 | "we"
 | "wel"
 | "swwe"
 | "swwel"
 | "hwset"
 | "hwclr"
 | "swmod"
 | "swacc"
 | "sticky"
 | "stickybit"
 | "intr"
 | "anded"
 | "ored"
 | "xored"
 | "counter"
 | "overflow"
 | "sharedextbus"
 | "errextbus"
 | "reset"
 | "littleendian"
 | "bigendian"
 | "rsvdset"
 | "rsvdsetX"
 | "bridge"
 | "shared"
 | "msb0"
 | "lsb0"
 | "sync"
 | "async"
 | "cpuif_reset"
 | "field_reset"
 | "activehigh"
 | "activelow"
 | "singlepulse"
 | "underflow"
 | "incr"
 | "decr"
 | "incrwidth"
 | "decrwidth"
 | "incrvalue"
 | "decrvalue"
 | "saturate"
 | "decrsaturate"
 | "threshold"
 | "decrthreshold"
 | "dontcompare"
 | "donttest"
 | "internal"
 | "alignment"
 | "regwidth"
 | "fieldwidth"
 | "signalwidth"
 | "accesswidth"
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 81
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 81

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
 | "sw"
 | "hw"
 | "addressing"
 | "precedence"
 | "encode"
 | "resetsignal"
 | "clock"
 | "mask"
 | "enable"
 | "hwenable"
 | "hwmask"
 | "haltmask"
 | "haltenable"
 | "halt"
 | "next"
 | PROPERTY
 ;

default_property_assign
 : "default" explicit_property_assign
 ;

explicit_property_assign
 : property_modifier property
 | property (EQ property_assign_rhs)
 ;

post_property_assign
 : instance_ref (EQ property_assign_rhs)
 ;

property_modifier
 : "posedge"
 | "negedge"
 | "bothedge"
 | "level"
 | "nonsticky"
 ;

property_assign_rhs
 : property_rvalue_constant
 | "enum" enum_body
 | instance_ref
 | concat
 ;

property_rvalue_constant
 : "true"
 | "false"
 | "rw"
 | "wr"
 | "r"
 | "w"
82 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

82 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
 | "na"
 | "compact"
 | "regalign"
 | "fullalign"
 | "hw"
 | "sw"
 | num
 | str
 ;

enum_body
 : LBRACE (enum_entry)* RBRACE
 ;

concat
 : LBRACE concat_elem (COMMA concat_elem)* RBRACE
 ;

concat_elem
 : instance_ref
 | num
 ;

enum_entry
 : id EQ num
 (LBRACE (enum_property_assign)* RBRACE
 |
)
 SEMI
 ;

enum_property_assign
 : ("name"
 | "desc"
)
 EQ str SEMI
 ;

Lexer grammar:
mWS
| mSL_COMMENT
| mML_COMMENT
| mID
| mNUM
| mSTR
| mLBRACE
| mRBRAC
| mLSQ
| mRSQ
| mLPAREN
| mRPAREN
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 83
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 83

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
| mAT
| mOR
| mSEMI
| mCOLON
| mCOMMA
| mDOT
| mDREF
| mEQ
| mINC
| mMOD
protected mLETTER

:('a'..'z'
|'A'..'Z'
)
;

mWS
:(' '
|'\t'
|('\n'
|'\r'
|"\r\n"
)
)
;

mSL_COMMENT
:"//" (('\n'
|'\r'
))*
('\n'
|'\r'
|"\r\n"
)
;

mML_COMMENT
:"/*"
('*'
|'\n'
|'\r'
|"\r\n"
|('*'
|'\n'
|'\r'
)
)*
"*/"
;

mID
:('\\'
|
)
(mLETTER
|'_'
)
(mLETTER
|'_'
84 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

84 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
|'0'..'9'
)*
;

protected mVNUM
:'\''
('b'
('0'
|'1'
|'_'
)+
|'d'
('0'..'9'
|'_'
)+
|'o'
('0'..'7'
|'_'
)+
|'h'
('0'..'9'
|'a'..'f'
|'A'..'F'
|'_'
)+
)
;

mNUM
:('0'..'9')*
(mVNUM
|('0'..'9')
)
|"0x"
('0'..'9'
|'a'..'f'
|'A'..'F'
)+
;

protected mESC_DQUOTE
:"\\\""
;

mSTR
:'"'
(('"'
|'\n'
|'\\'
)
|mESC_DQUOTE
|'\n'
)*
'"'
;

mLBRACE
:'{'
;

85 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

85 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
mRBRAC
:'}'
;

mLSQ
:'['
;

mRSQ
:']'
;

mLPAREN
:'('
;

mRPAREN
:')'
;

mAT
:'@'
;

mOR
:'|'
;

mSEMI
:';'
;

mCOLON
:':'
;

mCOMMA
:','
;

mDOT
:'.'
;

mDREF
:"->"
;

mEQ
:'='
;

mINC
:"+="
;

mMOD
:"%="
86 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

86 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
;

87 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

87 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
88 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

88 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
89 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

89 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
90 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

90 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Annex C

(informative)

Code example

The following code sample provides an example of a specification written in SystemRDL.

//===
//
// Program : generic_example.rdl
// Language : Register Description Language (RDL)
// Purpose : This is a generic example designed to show a number of the
// RDL Language Features...
//
//===

signal gen_reset_signal_type { // Define a generic reset signal type
 name="Generic Reset Signal";
 desc="This is a generic reset signal used to reset";
};

gen_reset_signal_type generic_reset; // Instance the Generic Reset Signal

//
// This example shows the concept of a register file
// A register file is a group of registers that belong together...
// Now we can easily instance multiple fifo status registers very easily...
//

regfile fifoRfile {
 reg pointerReg { field { we; hwmask;} data[31:0]; };

 reg fifoStatusReg {
 field {} full;
 field {} empty;
 field {} almost_empty[4:4];
 field {} almost_full[5:5];

 full->reset = 1'b0;
 full->resetsignal = generic_reset;

// Just the full signal uses generic reset. Others use reset...
 empty->reset = 1'b1;
 almost_empty->reset = 1'b1;
 almost_full ->reset = 1'b0;
 };

 pointerReg head; // Define a register pointing to the head of the fifo

head->resetsignal = generic_reset;
// Assign an alternate reset to register head

 pointerReg tail; // Define a register pointing to the tail of a fifo
 fifoStatusReg status; // Define a register for the Fifo's Status
};
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 91
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 91

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
// This example shows using perl to do anything you desire

field myField {
 desc = "My example 2bit status field";
 rclr; // Read to Clear
};

// An example of Apache's ASP standard for embedding Perl
reg myReg {
 <% $num_fields = 16;
 for($i = 0; $i < $num_fields*2; $i += 2) { %>
 myField data<%=$i/2%> [<%=$i+1%>:<%=$i%>];
 data<%=$i/2%>->reset = 2'd<%=$i/2%4%>;
 <% } %>
};

//
// Enumeration Example
//
enum link_status_enum {
 not_present = 4'd0 { desc = "No link peer is currently detected"; };
 training = 4'd1 { desc = "Link is currently training"; };
 snooze = 4'd5 { desc = "Link is in a partial low power state"; };
 sleep = 4'd6 { desc = "Link is a Full low power state"; };
 wake = 4'd7 { desc = "Link is waking up from snooze or sleep state"; };
 active = 4'd10 { desc = "Link is operating normally"; };
};

field link_status_field {
hw = rw;
sw = r;
desc = "Status of a Serdes Link";
encode = link_status_enum;
fieldwidth = 4;

};

reg serdes_link_status_reg {
 link_status_field port0; // Instance 4 ports of Link Status
 link_status_field port1;
 link_status_field port2;
 link_status_field port3;
};

//
// Counter Example
//

field count_field { // Anonymous Generic
Counter definition.

 hw = r; sw = rw; rclr; counter;
 desc = "Number of certain packet type seen";
};

reg gige_pkt_count_reg {
 count_field port0[31:24];
 count_field port1[23:16];
 count_field port2[15:8];
 count_field port3[7:0];
};
92 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

92 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
reg spi4_pkt_count_reg {
 count_field port0[31:16];
 count_field port1[15:0];
 port0->threshold = 16'hCFFF;
 port1->threshold = 16'hCFFF;
};

reg vc_pkt_count_reg {
 count_field vc_count[30:0];
 field { desc="VC is Active"; stickybit; } active;
 active->reset = 1'b1;
 vc_count->reset = 31'h0;
};

addrmap some_register_map {

 name = "RDL Example Registers";
 desc = "This address map contains some example registers to show
 how RDL can be utilized in various situations.";

 //
 // This register is a inline register definition.
 // It defines a simple ID register. No flip-flop is implemented
 //
 reg chip_id {
 name = "This chip part number and revision #";
 desc = "This register contains the part # and revision # for XYZ ASIC";

 field {
 hw = w; // This combination of attributes creates an input port for
 sw = r; // hardware to set the part num external to the reg block
 desc = "This field represents the chips part number";
 } part_num[31:4] = 28'h12_34_56_7; // Verilog Style number with _'s

 field {
 hw = na; // This combination creates the ID num as a constant internal
 sw = r; // to the reg block
 desc = "This field represents the chips revision number";
 } rev_num[3:0] = 4'b00_01; // Verilog Style number with _'s
 }; // End chip_id register definition

 // Create an Instance of CHIP_ID type called chip_id_reg at Addr=0;
 external chip_id chip_id_reg @0x0000;

 serdes_link_status_reg link_status; // Instance a reg. Auto Address

 myReg myRegInst @0x0010; // This instance starts at 0x10

 spi4_pkt_count_reg spi4_pkt_count @0x0020;
 gige_pkt_count_reg gige_pkt_count_reg;

// Create 8 Instances of Fifo Reg File Starting at Address=0x100
 fifoRfile fifo_port[8] @0x100 += 0x10;

external vc_pkt_count_reg vc_pkt_count[256] @0x1000 +=0x10;
}; // End some_register_map
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 93
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 93

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
94 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

94 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
Annex D

(informative)

Formatting text strings

SystemRDL has a set of tags which can be used to format text strings. These tags are based on the phpBB
code formatting tags, which are extended for use with SystemRDL and referred to as RDLFormatCode. The
RDLFormatCode tags shall be interpreted by the SystemRDL compiler and rendered in the generated
output. The set of tags specified below is the complete set and is not extensible like phpBB code. These tags
are only interpreted within the name and desc properties in SystemRDL (see Table 5). If a SystemRDL
compiler encounters an unknown tag, this tag shall be ignored by the compiler and passed through as is.

The concept of phpBB code takes its origin from the HTML 4.01 standard; for additional information (on
the rules and semantics associated with these tags) see Clause 2.

D.1 Well-formed RDLFormatCode constructs

A well-formed tag also has an end-tag. For nesting well-formed tags, the innermost shall be closed before
the outmost one is.

[b]Text[/b] -- Bold

[i]Text[/i] -- Italic

[u]Text[/u] -- Underline

[color=colorValue]Text[/color]-- Color See D.3 for colorValues

[size=size]Text[/size] -- Font size where size is a valid HTML size

[url]Text[/url] -- URL reference

URL references can specified in two forms.

1. [url]http://www.spiritconsortium.com[/url] -- which places the target link
the generated code.

2. [url=http://www.spiritconsortium.com]Spirit Consortium[/url] -- Which
displays the text Spirit Consortium but links the URL provided.

[email]Text[/email] -- Email address in the form of user@domain

[img]image reference[/img] -- Insert image reference here. Image reference
can be relative pathname or absolute path name. Its up to the user to follow
valid path rules for the target system that they are generating code for.

[code]Text[/code] -- Anything that requires a fixed width
with a Courier-type font

[list] , [list=1]
or [list=a] -- Listing directives, un-ordered or

[*] list element ordered (numbered: list=1,
[*] list element alpha: list=a)
[*] list element

[/list]
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 95
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 95

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
[quote]text[/quote] -- Replaces with ". useful for putting
"'s inside a name or desc field.

D.2 Single-tag RDLFormatCode constructs

[br] -- Line break

[lb] -- Left bracket ([)

[rb] -- Right bracket (])

[p] -- Paragraph begin

[sp] -- White Space (equivalent to an HTML)

[index] -- Replaced by the index # of the individual component
instance when instantiated as an array. When representing

an individual array element this is substitutes the index and for an entire
array it substitutes the range.

[index_parent] -- Replaced by the index # of the individual component
parent instance when the parent is instantiated as an
array (extends phpBB).When representing an individual

array element this is substitutes the index and for an entire array it
substitutes the range.

[name] -- Replaced by the descriptive name of the component
(extends phpBB). This tag is undefined when used inside

the value of the name property.

[desc] -- Replaced by the component’s description (extends phpBB).

[instname] -- Replaced by the instance name (extends phpBB).
96 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

96 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification SystemRDL v1.0, March 24, 2009Specification March 24, 2009
D.3 colorValues for the color tag

The RDLFormatCode color can accept two forms of arguments for color: enumerated values specified by
the HTML 4.01 or CSS specifications and RGB #’s.

Example

Who is afraid of [color=red]red[/color], [color=#eeaa00]yellow[/color]
and [color=#30f]blue[/color]?

Color
Name Hex 6 RGB RGB% Sample

black #000000 0,0,0
0%,0%,0
%

silver #C0C0C0 ########
75%,75%,
75%

gray #808080 ########
50%,50%,
50%

white #FFFFFF ########
100%,100
%,100%

maroon #800000 128,0,0
50%,0%,0
%

red #FF0000 255,0,0
100%,0%,
0%

purple #800080 128,0,128
50%,0%,5
0%

fuchsia #FF00FF 255,0,255
100%,0%,
100%

green #008000 0,128,0
0%,50%,0
%

lime #00FF00 0,255,0
0%,100%,
0%

olive #808000 128,128,0
50%,50%,
0%

yellow #FFFF00 255,255,0
100%,100
%,0%

navy #000080 0,0,128
0%,0%,50
%

blue #0000FF 0,0,255
0%,0%,10
0%

teal #008080 0,128,128
0%,50%,5
0%

aqua #00FFFF 0,255,255
0%,100%,
100%

HTML 4.01 & CSS2 Colors
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 97
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved. 97

SystemRDL v1.0, March 24, 2009 SystemRDL v1.0March 24, 2009 SystemRDL v1.0
D.4 Example

The following code sample demonstrates some simple uses of RDLFormatCode.

addrmap top {

 name = "RDLCode Example";

 // desc = "Please refer to [quote]the[/quote] specification [url]http://
www.yahoo.com]here[/url] for details.";

reg {

name = "Register my index = [index] my [b]parents index = [index_parent]
my instname = [instname] [index][/b]";

 desc = "Please [b][u]refer[index] to the [index] specification[/u][/b]
[url=http://www.yahoo.com]here[/url] for details.";

 field {

 name = "START [test] [br] [b]Some bold text for
[instname][lb][index][rb][/b],

 [i]italic[/i], [u]underline[/u], [email]tcook@denali.com[/email],

 [img]some_image.gif[/img]

 [p][color=#ff3366]Some Color[/color][/p]

 [code]echo This is some code;[/code]

 [size=18][color=red][b]LOOK AT ME![/b][/color][/size]

 [list]

 [*][color=red]Red[/color]

 [*][color=blue]Blue[/color]

 [*][color=green]Green[/color]

 [/list]

 [list=1]

 [*]Red

 [*]Blue

 [*]Yellow

 [/list]

 [list=a]

 [*]Red

 [*]Blue

 [*]Yellow

 [/list]

 ";

 desc = "Please [some unknown tag] refer to [list=1] [*]Red [*]Green [/
list] the specification [url=http://www.google.com]here[/url] for
details.";

 } f1;

 } r1 [10];

};

The complete SystemRDL source and sample output from this example can be found in the SystemRDL
release in the examples/rdl_code directory.

NOTE—Some details of the sample output are the result of factors outside the control of RDLCode and are functions of
the compiler, its arguments, or supporting style sheets.
98 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

98 Copyright © 2007-2009 The SPIRIT Consortium. All rights reserved.

Specification
M

arch 24, 2009

C
opyright ©

 2007-2009 The S
P

IR
IT C

onsortium
. A

ll rights reserved.
99

A

(in

C

Ta allow the property and gives references to the
tab mponent description)). The Mutual exclusion
co ivelow are mutually exclusive). Each mutual
ex s the type for each property, what side of an
ass y appears on the left-hand side (LH assign), the
typ th. The left-hand side in the Signal columns
ind y be assigned to a signal property.

al Dyna
mic

assign
ment

Notes
RHa

assign

a x

a x

a x

a compact, regalign, or
fullalign

a

a x x

a

nnex E

formative)

omponent-property relationships

ble E1 lists all properties defined in SystemRDL. For each property, Table E1 specifies which component types
les (or section) where the property is defined (e.g., Table 18 for the property accesswidth (within the Register co

lumn designates groups of properties which are mutually exclusive (e.g, group A shows activehigh and act
clusion group is given a letter (e.g., A), which is shown next to all members of that group. Table E1 also show
ignment is may appear on, and if it can be dynamically assigned. The two Constant columns indicate if a propert
e shown can be assigned on the right-hand side (RH assign), e.g., a numeric type for the property accesswid
icate if a property may be assigned a signal. The right-hand side in the Signal columns indicate if a property ma

Table E1—Property cross-reference

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

ccesswidth Table 18 x numeric

ctivehigh A Table 7 x boolean

ctivelow A Table 7 x boolean

ddressing Table 21 x enumera-
tion value

lignment Table 20 Table 21 x unsized
numeric

nded Table 13 x boolean

rbiter Table 22 x boolean

M
arch 24, 2009

S
ystem

R
D

L v1.0

100
C

opyright ©
 2007-2009 The S

P
IR

IT C
onsortium

. A
ll rights reserved.

a x

b x

b x intr modifier

b

c x

c x

d y x

d x Decrementing counter satu-
rate value

d x x Decrementing counter satu-
rate reached

d x Decrementing counter
threshold value

d x x Decrementing counter
threshold reached

d y x

d x

d Also used in enumeration
(Table 5)

d x

al Dyna
mic

assign
ment

Notes
RHa

assign
sync N Table 7 x boolean

igendian L Table 21 x boolean

othedge H Table 15 N/A

ridge Table 22 x boolean

ounter E Table 14 x boolean

puif_reset Table 7 x boolean

ecr Table 14 N/A x

ecrsaturate Table 14 x numeric x

ecrsaturate Table 14 N/A

ecrthreshold Table 14 x numeric x

ecrthreshold Table 14 N/A

ecrvalue G Table 14 x numeric x

ecrwidth G Table 14 x numeric

esc Table 5 Table 5 Table 5 Table 5 Table 5 x string x

ontcompare O Table 6 x boolean
sized

numeric

Table E1—Property cross-reference (Continued)

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

Specification
M

arch 24, 2009

C
opyright ©

 2007-2009 The S
P

IR
IT C

onsortium
. A

ll rights reserved.
101

d x

d x

d x

e y x

e x enumeration object refer-
ence

e x

f x

f

h x x

h y x

h y

h r, w, rw, wr, or na

h y x

h y x

h y x

h y x

al Dyna
mic

assign
ment

Notes
RHa

assign
ontcompare O Table 6,
Table 18

Table 6 Table 6,
Table 21

x boolean

onttest O Table 6 x boolean
sized

numeric

onttest O Table 6,
Table 18

Table 6 Table 6,
Table 21

x boolean

nable J Table 16 N/A x

ncode Table 17 x N/A

rrextbus Table 18 x numeric

ield_reset Table 7 x boolean

ieldwidth Table 13 x numeric

alt See 8.7 N/A

altenable K Table 16 N/A x

altmask K Table 16 N/A x

w Table 8 x enumera-
tion value

wclr Table 13 x boolean x

wenable D Table 13 x boolean x

wmask D Table 13 x boolean x

wset Table 13 x boolean x

Table E1—Property cross-reference (Continued)

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

M
arch 24, 2009

S
ystem

R
D

L v1.0

102
C

opyright ©
 2007-2009 The S

P
IR

IT C
onsortium

. A
ll rights reserved.

i y x

i x Incrementing counter satu-
rate value

i x x Incrementing counter satu-
rate reached

i x Incrementing counter
threshold value

i x x Incrementing counter
threshold reached

i y x

i x

i x

i x x

l x intr modifier

l x

l

m y x

m

n x Also used in enumeration
(Table 5)

n x intr modifier

n y x

al Dyna
mic

assign
ment

Notes
RHa

assign
ncr Table 14 N/A x

ncrsaturate Table 14 x numeric x

ncrsaturate Table 14 N/A

ncrthreshold Table 14 x numeric x

ncrthreshold Table 14 N/A

ncrvalue F Table 14 x numeric x

ncrwidth F Table 14 x numeric

ntr E Table 16 x boolean

ntr See 8.7 N/A

evel H Table 15 N/A

ittleendian L Table 21 x boolean

sb0 M Table 21 x boolean

ask J Table 16 N/A x

sb0 M Table 21 x boolean

ame Table 5 Table 5 Table 5 Table 5 Table 5 x string

egedge H Table 15 N/A

ext Table 10 N/A x

Table E1—Property cross-reference (Continued)

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

Specification
M

arch 24, 2009

C
opyright ©

 2007-2009 The S
P

IR
IT C

onsortium
. A

ll rights reserved.
103

n x intr modifier

o x x

o x x

p x intr modifier

p x hw or sw

r x

r

r y x

r y x

r x

r

r

s x Incrementing counter satu-
rate value

s x x Incrementing counter satu-
rate reached

s

s

s

s x

al Dyna
mic

assign
ment

Notes
RHa

assign
onsticky I Table 15 N/A

red Table 13 x boolean

verflow Table 14 N/A

osedge H Table 15 N/A

recedence Table 17 x enumera-
tion value

clr Table 11 x boolean

egwidth Table 18 x numeric

eset Table 10 x numeric x

esetsignal Table 10 N/A x

set Table 11 x boolean

svdset Table 21 x boolean

svdsetX Table 21 x boolean

aturate Table 14 x numeric x

aturate Table 14 N/A

hared Table 18 x boolean

haredextbus Table 20 Table 21 x boolean

ignalwidth Table 7 x numeric

inglepulse Table 11 x boolean

Table E1—Property cross-reference (Continued)

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

M
arch 24, 2009

S
ystem

R
D

L v1.0

104
C

opyright ©
 2007-2009 The S

P
IR

IT C
onsortium

. A
ll rights reserved.

s x

s x

s x r, w, rw, wr, or na

s x x

s x x

s y x

s y x

s x

t x Incrementing counter
threshold value

t x x Incrementing counter
threshold reached

u x x

w y x

w y x

w x

w x

x x x
ay

al Dyna
mic

assign
ment

Notes
RHa

assign
ticky I Table 16 x boolean

tickybit I Table 16 x boolean

w Table 8 x enumera-
tion value

wacc Table 11 x boolean

wmod Table 11 x boolean

wwe Table 11 x boolean x

wwel Table 11 x boolean x

ync N Table 7 x boolean

hreshold Table 14 x numeric x

hreshold Table 14 N/A

nderflow Table 14 N/A

e C Table 13 x boolean x

el C Table 13 x boolean x

oclr B Table 11 x boolean

oset B Table 11 x boolean

ored Table 13 x boolean

indicates a RH assignment can only take place if a LH assignment also occurs; otherwise this is an error.

Table E1—Property cross-reference (Continued)

Property Mutual
exclusion

SystemRDL components Constant Sign

Field Register Register
file

Address
map Signal LH

assign
RH

assign
LH

assign

	 Front Page
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Motivation
	1.4 Conventions used
	1.4.1 Visual cues (meta-syntax)
	1.4.2 Notational conventions
	1.4.3 Examples

	1.5 Use of color in this standard
	1.6 Contents of this standard

	2. References
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Lexical conventions
	4.1 White space
	4.2 Comments
	4.3 Identifiers
	4.4 Keywords
	4.5 Strings
	4.6 Numbers

	5. General concepts, rules, and properties
	5.1 Key concepts and general rules
	5.1.1 Defining components
	5.1.2 Instantiating components
	5.1.3 Specifying component properties
	5.1.4 Scoping

	5.2 General component properties
	5.2.1 Universal properties
	5.2.2 Structural properties

	6. Signals
	6.1 Introduction
	6.2 Signal properties
	6.2.1 Semantics
	6.2.2 Example

	6.3 Signal definition and instantiation
	6.3.1 Semantics
	6.3.2 Example

	7. Field component
	7.1 Introduction
	7.2 Defining and instantiating fields
	7.3 Using scalar and array field instances
	7.4 Field access properties
	7.4.1 Semantics
	7.4.2 Example

	7.5 Hardware signal properties
	7.5.1 Semantics
	7.5.2 Example

	7.6 Software access properties
	7.6.1 Semantics
	7.6.2 Examples

	7.7 Hardware access properties
	7.7.1 Semantics
	7.7.2 Example

	7.8 Counter properties
	7.8.1 Counter incrementing and decrementing
	7.8.2 Counter saturation and threshold

	7.9 Interrupt properties
	7.9.1 Semantics
	7.9.2 Example

	7.10 Miscellaneous field properties
	7.10.1 Semantics
	7.10.2 Example

	8. Register component
	8.1 Defining and instantiating registers
	8.1.1 Semantics for all registers

	8.2 Instantiating internal registers
	8.2.1 Semantics
	8.2.2 Example

	8.3 Instantiating external registers
	8.3.1 Semantics
	8.3.2 Example

	8.4 Instantiating alias registers
	8.4.1 Semantics
	8.4.2 Example

	8.5 Register properties
	8.5.1 Semantics
	8.5.2 Example

	8.6 Understanding field ordering in registers
	8.6.1 Semantics
	8.6.2 Examples

	8.7 Understanding interrupt registers
	8.7.1 Semantics
	8.7.2 Example

	9. Register file component
	9.1 Defining and instantiating register files
	9.1.1 Semantics
	9.1.2 Examples

	9.2 Register file properties
	9.2.1 Semantics
	9.2.2 Example

	10. Address map component
	10.1 Introduction
	10.2 Defining and instantiating address maps
	10.2.1 Semantics
	10.2.2 Example

	10.3 Address map properties
	10.3.1 Semantics
	10.3.2 Example

	10.4 Defining bridges or multiple view address maps
	10.4.1 Semantics
	10.4.2 Example

	11. User-defined properties
	11.1 Defining user-defined properties
	11.1.1 Semantics
	11.1.2 Example

	11.2 Assigning (and binding) user-defined properties
	11.2.1 Semantics
	11.2.2 Example

	12. Enumeration (bit-field encoding)
	12.1 Introduction
	12.2 Defining enumerations

	13. Preprocessor directives
	13.1 Embedded Perl preprocessing
	13.1.1 Semantics
	13.1.2 Example

	13.2 Verilog-style preprocessor
	13.2.1 Verilog-style preprocessor directives
	13.2.2 Limitations on nested file inclusion

	14. Advanced topics in SystemRDL
	14.1 Application of signals for reset
	14.2 Understanding hierarchical interrupts in SystemRDL
	14.2.1 Example structure and perspective
	14.2.2 Code snippet 1
	14.2.3 Code snippet 2
	14.2.4 Code snippet 3
	14.2.5 Code snippet 4
	14.2.6 Code snippet 5
	14.2.7 Code snippet 6
	14.2.8 Code snippet 7
	14.2.9 Code snippet 8
	14.2.10 Code snippet 9
	14.2.11 Code snippet 10
	14.2.12 Code snippet 11

	14.3 Understanding bit ordering and byte ordering in SystemRDL
	14.3.1 Bit ordering
	14.3.2 Byte ordering

	Annex A: Bibliography
	Annex B: Grammar
	Annex C: Code example
	Annex D: Formatting text strings
	D.1 Well-formed RDLFormatCode constructs
	D.2 Single-tag RDLFormatCode constructs
	D.3 colorValues for the color tag
	D.4 Example

	Annex E: Component-property relationships
	Last Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

