SYSTEMS INITIATIVE

OCP<%

Open Core Protocol
Specification ~

OCP<%

Open Core Protocol
Specification

Document Revision 1.0

© 2013 Accellera Systems Initiative Inc., All Rights Reserved.

Open Core Protocol Specification 3.0
Document Revision 1.0

This document, including all software described in it, is furnished under the terms of the Open Core Protocol
Specification License Agreement (the “License”) and may only be used or copied in accordance with the terms of
the License. The information in this document is a work in progress, jointly developed by the members of OCP-
IP Association (“OCP-IP”) and is furnished for informational use only.

In September 2013, Accellera Systems Initiative (Accellera) acquired certain assets of OCP-IP. These assets
include the current OCP 3.0 standard and the supporting infrastructure. OCP 3.0 was released by Accellera in
October 2013.

Notice

Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. Accellera Systems Initiative is not
responsible for identifying Essential Patent Claims for which a license may be required, for
conducting inquiries into the legal validity or scope of Patent Claims or determining whether any
licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any,
or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are
expressly advised that determination of the validity of any patent rights, and the risk of infringement
of such rights, is entirely their own responsibility. Further information may be obtained from the
Accellera Systems Initiative IP Rights Committee.

The trademarks, logos, and service marks displayed in this document are the registered and unregistered
trademarks of Accellera, its members and its licensors. The following trademarks of Sonics, Inc. have been licensed
to OCP-IP and subsequently to Accellera: FastForward, CoreCreator, SiliconBackplane, SiliconBackplane Agent,
InitiatorAgent Module, TargetAgent Module, ServiceAgent Module, SOCCreator, and Open Core Protocol.

The copyright and trademarks owned by Accellera, whether registered or unregistered, may not be used in
connection with any product or service that is not owned, approved or distributed by Accellera, and may not be
used in any manner that is likely to cause customer confusion or that disparages Accellera. Nothing contained in
this document should be construed as granting by implication, estoppel, or otherwise, any license or right to use
any copyright without the express written consent of Accellera, its licensors or a third party owner of any such
trademark.

Accellera reserves the right to make changes to OCP and this manual in subsequent revisions and makes no
warranties whatsoever with respect to the completeness, accuracy, or applicability of the information in this
manual, when used for production design and/or development.

Suggestions for improvements to OCP and/or to this manual are welcome. They should be sent to the OCP email
reflector or to the address below.

The current Working Group’s website address is

http://www.accellera.org/apps/org/workgroup/ocp specification-wg/

Information about Accellera and membership enrollment can be obtained by inquiring at www.accellera.org or at
the address below.

Accellera Systems Initiative Inc.
1370 Trancas Street, #163
Napa, CA 94558

Phone: (707) 251-9977

Fax: (707) 251-9877

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera standards documents are developed within Accellera and the Technical Committee of Accellera
Systems Initiative Inc. Accellera develops its standards through a consensus development process, approved
by its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the
consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of
any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury,
property or other damage, of any nature whatsoever, whether special, indirect, consequential, or
compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other
Accellera Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent
infringement. Accellera Standards documents are supplied “AS 1S.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard.
Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due
to developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to
determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a
consensus of concerned interests, it is important to ensure that any interpretation has also received the
concurrence of a balance of interests. For this reason, Accellera and the members of its Technical Committee
are not able to provide an instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of
membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Comments on standards and
requests for interpretations should be addressed to:

Accellera Systems Initiative
1370 Trancas Street #163
Napa, CA 94558

USA

www.accellera.org

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or
trademarks to indicate compliance with the materials set forth herein.

Authorization to copy portions of any individual standard for internal or personal use must be granted by
Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange for
authorization please contact Lynn Bannister, Accellera, 1370 Trancas Street #163, Napa, CA 94558, phone
(707) 251-9977, e-mail lynn@accellera.org. Permission to copy portions of any individual standard for
educational classroom use can also be obtained from Accellera.

Conlents

Part |

Overview
L1OCPCharacteristiCs v v o e e e e e e e e e

L2Compliance

Specification

Theory of Operation

Signals and Encoding

31lDataflowSignals e
3L1BasicSignals e
312SIMple EXtENSIONS. L. e e
3L3BUrStEXIENSIONS e e
3LATagEXtensions o o e e e
315Thread EXtensions. o i

32Sideband Signals
3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific Flag Signals.
3.22Control and StatusSignals e

33TestSignals
33 1Scaninterface.
3.3.2Clock Contral Interface. o e
333Debugand TestInterface

3.4 Signa Configuration
34.1Signa Directions e e e e e

Protocol Semantics

421Signal GroUPS .« & v v v o e e e e e e e e e e

4.2 Combinational Dependencies e

4.3 Signa Timingand Protocol Phases
4310CPCIOCK . . . o o
432Dataflow Signals e
433Sidebandand Test Signals

44 Transfer Effects
441 Partial Word Transfers e
442 Posting SemantiCs. e

13
13
13
16
19
22
23
25
26
28
29
29
30
30
31
35

vii Open Core Protocol Specification

4.4.3 Transaction Completion, Transaction Commitment 51
A5ENndianness. e 51
46 Burst DEfinition L e 52

4.6.1Burst AddressSeqUENCES i e e e e e 53

4.6.2 Burst Length, Preciseand ImpreciseBursts 54

4.6.3Constant FieldsinBursts 55

A.6.4AtOMICILY e 55

4.6.5 Single Request / Multiple DataBursts (Packets) 55

4.6.6 MRegLast, MDataLast, SRespLast. 56

4.6.7 MRegRowL ast, MDataRowL ast, SRespRowLast 56
A7Ta0S . o o e e e 57

471 0rdering Restrictions 57
48Threadsand CONNECLiONS o v i e e e 58
490CPConfiguration e 59

4.9.1Protocol OptionNs e 59

4.9.2Phase Options. e 63

4.93Signal Options. e 64

494 Minimum Implementation 64

4.9.5 OCP Interface Interoperability, 64

4.9.6 Configuration Parameter Defaults 67

5 OCP Coherence Extensions: Theory of Operation 73
5.1CacheCoherence 74
5.2Loca Viewvs. SystemView 74
5.3 Coherent System Transactions e 75

53.1CachelLineandCacheStates. 75

5.3.2ThreeHop and Four Hop Protocols. 76
BAAddressSpaceo 77
55 Entitiesand Ports L 77
56CommMands. 79
5.7 Self Intervention and Seridlization o o Lo oL 80
5.8 Interconnect or Bridge Agent 81
59 Port Characteristics o o 81
510Master Models e 84

5101 CoherentMaster 84

5.10.2 Coherence-Aware Master e 86

5103 Legacy Master e e e 86

Contents ix

BllSlaveModels 86
5.11.1 Coherent Slave: DirectoryBased, 86
5.11.2 Coherent Slave: SnoopBased 88
5113Legacy Slave. L e e e e 89

512 Multi-threadingand Tags 89

5.A3BUrst SUPPOIt 90

514Memory CONSIStENCY o o o o Q0

5.15 Race Condition, Deadlock, Livelock, and Starvation 0

5.16 Heterogeneous Coherence System L 91

OCP Coherence Extensions: Signals and Encodings 93

B6.1Definitions. e 93
6.LINew TransaCtion TYPES. . . o v v v v o e e e e e e e e e e e e e 93

6.2 Main Port: Parameters, Signals,and Encodings 94
B6.2.110Introduction 94
6.22MainPort Parameters. 95
6.23SignalsandEncodings 96
6.24Transfer Phases o o 107
6.25 Transfer Effects. 108

6.3 Intervention Port: Parameters, Signals, and Encodings 110
B6.3.1Introduction 110
6.3.2Port Parameters 111
6.3.3SignalsandEncodings o 112
6.3.4Signal GroUPS. v i e e e 119
6.35Transfer Phases 121
6.3.6 Phase Ordering withinaTransfer. 121
6.3.7Transfer Effects. 122

Interface Configuration File 123

71lLlexical Grammar e 123

T2SYNEAX . . o o e e 124

CoreRTL Configuration File 129

BLSYNAX o e 129

82COMPoNeENtS e 130

8.3 Sample RTL ConfigurationFile. 138

X

Open Core Protocol Specification

9 CoreTiming
9.1Timing Parameters e
.LAMINIMUMParamMEters o
9.1.2Hold-timeParameters.
9.1.3Technology Variables.,
9.14Connecting TWOOCPCOreS v o v v i it i e e e e e e e e
9.2 Core Synthesis Configuration File
0.21Syntax ConVventionS. oo e
9.22VersionSection e
9.23Clock Section
924 AreaSeCtion.
9.25Port Constraints Section.
926 MaxDelay Constraints e e
9.27FdsePathCongtraints.
9.2.8 Sample Core Synthesis ConfigurationFile.

Part Il Guid€elines

10 Timing Diagrams
10.1 SimpleWriteand Read Transfero
10.2Request Handshake e
10.3 Request Handshake and Separate Response oo
104 WritewithResponse e
10.5Non-Posted Write e
106 BurstWrite o
10.7 Non-PipedinedRead e
10.8 Pipelined Requestand Response oo
10.9RePONSEACCEDL o o e e
10.10 Incrementing PreciseBurstRead
10.11 Incrementing ImpreciseBurst Read
10.12WrappingBurst Read
10.13 Incrementing Burst Read with IDLE Request Cycle
10.14 Incrementing Burst Read with NULL ResponseCycle
10.15SingleRequest BurstRead
10.16 Datahandshake Extension
10.17 Burst Write with Combined RequestandData
10.18 2-Dimensional Block Read
1019 Tagged Reads

141
142
142
142
143
144
146
146
148
148
148
149
154
154
155

157

Contents xi

11

12

1020 Tagged BUrStS o 187
1021 Threaded Read e 189
10.22 Threaded Read with Thread Busy 190
10.23 Threaded Read with Threead Busy Exact 192
10.24 Threaded Read with Pipelined ThreadBusy 193
J0.25ReSEt 195
10.26 ResetwithClock Enable 195
10.27BasicRead withClock Enable 196
1028 Slave DisCoNNeCct 197
10.29 Connection Transitionswith SlavePacing 198
OCP Coherence Extensions: Timing Diagrams 201
Developers Guidelines 213
121BasiCOCP e 213
12.1.1Divided CIOCKS. o o e 214
1212Signad Timing o o o o e e e e e e e e 215
12.1.3 State MachineExamples. 217
12140CPSUBSELS o v o o e e 222
122Simple OCPEXIENSIONS o o e e e e e 223
1221ByteEnables. 223
1222 MUltiple AdAress Spaces. o o v v v v e e e e e 224
12.231In-Band Information. 225
123BUrSt EXIENSIONS o o 226
12.3.1OCPBurst Capabilities e 226
12.3.2 Compatibility withthe OCP1.0BurstModel 230
124TagS . o v o e e e 232
125 Threadsand CONNECtions i i i 233
1251 Threads. o o o e 233
1252C0NNECIONS o o o e 238
126 OCP SpecificFeatures e 240
126.1WriteSemantiCS o o i e 240
12.6.2Lazy Synchronization 241
126.30CPandEndianness. 244
1264 SECUMLY . . o o o o e e e e e e e 245
12.7Sideband Signals e 246
1271 Reset Handling. e 246

12.7.2 Connection Protocol 248

Xii

Open Core Protocol Specification

13

14

15

128Debugand TestInterface
12.8.1ScanControl e
12.8.2Clock Control e

Developer’s Guidelines. OCP Coherent System Architecture Examples

13.1 Snoop-Based Coherent Architecture

13.2 Directory-Based Coherent System e
13.2.1Lega CoherenceDependency o o oo o oo

13.3 OCP Coherence Modelsfor Directory-Based Designs
13.3.1 A Directory-Based OCP Coherent System
1332Port Profiles
13.3.3 Master ImplementationModels oo oL
13.3.4 Slave ImplementationModels. oL,
13.3.5 Directory-Based Interconnect System-Level Model
13.3.6 Coherent and Coherent-Non-Cached TransactionFlows
13.3.7 Three-Way Communication. o oo
13.38 Handling Race Conditions.

13.4 Implementation Models for Snoop-Bus-BasedDesigns
13.4.1 Snoop-Bus-Based OCP Coherent Master Model
13.4.2 Snoop-Bus-Based OCP Coherence Interconnect Model
13.4.3 Snoop-Bus-Based OCP Coherence SlaveModel
1344 Coherence Transactions o o oo
13.4.5 Snoop-Bus-Based CC_WB Race Conditions

Timing Guidelines

141 LevelOTIMING o o e e e e
T42LevellTiMIiNG o e e e e
T43Level2 Timing o e e

OCP Profiles

15.1ConsensusProfiles
151 1SimpleSlave.
15.12High Speed Profile.
15.1.3 Advanced High-Speed Profile.
1514 0ptional Features e e e
15.15SeCUrity . . . o o e e e
15.1.6 Additional Profiles.
15.1.7 Sequential Undefined Length DataFlow Profile

255
255
257
259
260
261
267
272
276
281
282
287
289
290
290
290
291
292
295

315
316
316
316

Contents xiii

16

Part I11

17

18

19

15.1.8 Register AccessProfile 337
15.2Bridging Profiles e e 341
15.21SimpleH-busProfile. 341
15.2.2 X-Bus Packet WriteProfile 343
1523 X-BusPacket Read Profile 345
Core Performance 349
16.1ReportInstructions L 349
16.2SampleReport e 352
16.3 Performance Report Template 34
Protocol Compliance 357
Compliance 359
17.1 Configuration Compliance e 359
17.1.1 Interface Configuration 359
17.1.2 Configuration Parameter Extraction. 360
17.2 Protocol Compliance e 360
1721 SdlecttheRelevantCheckso 360
17.3 Veification Techniques 361
17.3.1 Dynamic Verification 361
1732 Static Verification 362
Protocol Compliance Checks 365
181 ActivationTables 365
18.2Compliance Checks e 373
18.2.1 Dataflow SignalsChecks 373
18.2.2 DataFlow PhaseChecks 376
18.2.3 Dataflow BurstChecks 390
18.2.4 DataFlow Transfer Checks 402
1825 DataFlow ReadEX Checks. 405
183Sideband Checks 407
18.4 Connection Protocol Checks 411
Configuration Compliance Checks 415
19.1Request Group o o e e e e e e e 416
19.2 Datahandshake Group e 424
19.3RepPONSEGIOUD .« . . v v e e e e e e e 428

194 Sideband Group e e 432

xiv. Open Core Protocol Specification

20

195 TestGroup o o o e e e 434
19.6 Interface Interoperability 434
Functional Coverage 443
20.1Signal Level e 444
202 Transfer Level 447
203 TransactionLevel 448
20.4 Mapping Signalsinto Categories o e 450

20.4.1 CrossCoverageof OneCategory v v v v v v v i e e e e e e 451

20.4.2 Cross Coverageon Multiple Categories. o o oo oo .. 451
205MetaCoverage o e e e 452
20.6 Sideband SignalsCoverage e 452
20.7Naming Conventions. i e e 453
AlHeader 457
A2TraceData 458

Index 461

Introduction

OCP-IP Confidential

The Open Core Protocol™ (OCP™) delivers the only non-proprietary, openly
licensed, core-centric protocol that comprehensively describes the system-
level integration requirements of intellectual property (IP) cores.

While other bus and component interfaces address only the data flow aspects
of core communications, the OCP unifies all inter-core communications,
including sideband control and test harness signals. OCP’s synchronous
unidirectional signaling produces simplified core implementation,
integration, and timing analysis.

OCP eliminates the task of repeatedly defining, verifying, documenting, and
supporting proprietary interface protocols. The OCP readily adapts to support
new core capabilities while limiting test suite modifications for core upgrades.

Clearly delineated design boundaries enable cores to be designed indepen-
dently of other system cores yielding definitive, reusable IP cores with
reusable verification and test suites.

Any on-chip interconnect can be interfaced to the OCP rendering it
appropriate for many forms of on-chip communications:

e Dedicated peer-to-peer communications, as in many pipelined signal
processing applications such as MPEG2 decoding.

e Simple slave-only applications such as slow peripheral interfaces.

¢ High-performance, latency-sensitive, multi-threaded applications, such
as multi-bank DRAM architectures.

The OCP supports very high performance data transfer models ranging from
simple request-grants through pipelined and multi-threaded objects. Higher
complexity SOC communication models are supported using thread
identifiers to manage out-of-order completion of multiple concurrent transfer
sequences.

xvi Open Core Protocol Specification

The CoreCreator™ tool automates the tasks of building, simulating, verifying
and packaging OCP-compatible cores. IP core products can be fully
“componentized” by consolidating core models, timing parameters, synthesis
scripts, verification suites, and test vectors in accordance with the OCP
Specification. CoreCreator does not constrain the user to either a specific
methodology or design tool.

Support

OCP-IP Confidential

The OCP Specification is maintained by the Open Core Protocol International
Partnership (OCP-IP™), a trade organization solely dedicated to OCP,
supporting products and services. For all technical support inquiries, please

contact techsupport@ocpip.org. For any other information or comments,
please contact admin@ocpip.org.

XVii

Changes for Version 3.0

Changes for Version 3.0 include:
e Coherence Extensions.
e Updated semantics for the write response enable.

e Support for new sideband signals that enable the master to control the
connection state of the interface based upon the input of both master and
slave. The new MConnect, SConnect, SWait and ConnectCap signals
implement the connection protocol and the connection parameter
configures these signals.

e Advanced High-Speed Profile.

Acknowledgments

OCP-IP Confidential

The following companies were instrumental in the development of the Open
Core Protocol Specification, Release 3.0.

All OCP-IP Specification Working Group members, including participants
from:

e MIPS Technologies Inc.

e Nokia

e Sonics Inc.

e Texas Instruments Incorporated

e Toshiba Corporation Semiconductor Company

e (Cadence

]

Overview

1.1

OCP-IP Confidential

The Open Core Protocol™ (OCP) defines a high-performance, bus-
independent interface between IP cores that reduces design time, design risk,
and manufacturing costs for SOC designs.

An IP core can be a simple peripheral core, a high-performance micropro-
cessor, or an on-chip communication subsystem such as a wrapped on-chip
bus. The Open Core Protocol:

e Achieves the goal of IP design reuse. The OCP transforms IP cores, making
them independent of the architecture and design of the systems in which
they are used.

e Optimizes die area by configuring into the OCP interfaces only those
features needed by the communicating cores.

e Simplifies system verification and testing by providing a firm boundary
around each IP core that can be observed, controlled, and validated.

The approach adopted by the Virtual Socket Interface Alliance’s (VSIA) Design
Working Group on On-Chip Buses (DWGOCB) is to specify a bus wrapper to
provide a bus-independent Transaction Protocol-level interface to IP cores.

The OCP is equivalent to VSIA’s Virtual Component Interface (VCI). While the
VCI addresses only data flow aspects of core communications, the OCP is a
superset of VCI that additionally supports configurable sideband control
signaling and test harness signals. The OCP is the only standard that defines
protocols to unify all of the inter-core communication.

OCP Characteristics

The OCP defines a point-to-point interface between two communicating
entities, such as IP cores and bus interface modules (bus wrappers). One
entity acts as the master of the OCP instance and the other as the slave. Only

2 Open Core Protocol Specification

OCP-IP Confidential

the master can present commands and is the controlling entity. The slave
responds to commands presented to it, either by accepting data from the
master, or presenting data to the master. For two entities to communicate in
a peer-to-peer fashion, there need to be two instances of the OCP connecting
them—one where the first entity is a master, and one where the first entity is
a slave.

Figure 1 shows a simple system containing a wrapped bus and three IP core
entities: one that is a system target, one that is a system initiator, and an
entity that is both.

Figure 1 System Showing Wrapped Bus and OCP Instances

System Initiator System Initiator/Target System Target
Core Core Core
Slave Slave
Response
"""""""""""" OCP Request
Bus wrapper S Slave
interface Bus Initiator Bus Initiator/Target Bus Target
module I I |
On-Chip Bus

The characteristics of the IP core determine whether the core needs master,
slave, or both sides of the OCP; the wrapper interface modules must act as
the complementary side of the OCP for each connected entity. A transfer
across this system occurs as follows. A system initiator (as the OCP master)
presents command, control, and possibly data to its connected slave (a bus
wrapper interface module). The interface module plays the request across the
on-chip bus system. The OCP does not specify the embedded bus
functionality. Instead, the interface designer converts the OCP request into an
embedded bus transfer. The receiving bus wrapper interface module (as the
OCP master) converts the embedded bus operation into a legal OCP
command. The system target (OCP slave) receives the command and takes the
requested action.

Each instance of the OCP is configured (by choosing signals or bit widths of a
particular signal) based on the requirements of the connected entities and is
independent of the others. For instance, system initiators may require more
address bits in their OCP instances than do the system targets; the extra
address bits might be used by the embedded bus to select which bus target
is addressed by the system initiator.

The OCP is flexible. There are several useful models for how existing IP cores
communicate with one another. Some employ pipelining to improve
bandwidth and latency characteristics. Others use multiple-cycle access
models, where signals are held static for several clock cycles to simplify timing

Overview 3

analysis and reduce implementation area. Support for this wide range of
behavior is possible through the use of synchronous handshaking signals
that allow both the master and slave to control when signals are allowed to
change.

1.2 Compliance

1. The core must include at least one OCP interface.

2. The core and OCP interfaces must be described using an RTL
configuration file with the syntax specified in Chapter 8 on page 129.

3. Each OCP interface on the core must:
e Comply with all aspects of the OCP interface specification

e Have its timing described using a synthesis configuration file following
the syntax specified in Chapter 9 on page 141.

4. The following practices are recommended but not required:
a. Each non-OCP interface on the core should:

¢ Be described using an interface configuration file with the syntax
specified in Chapter 7 on page 123.

e Have its timing described using a synthesis configuration file with
the syntax specified in Chapter 9 on page 141.

b. A performance report as specified in Chapter 16 on page 349 (or an
equivalent report) should be included for the core.

OCP-IP Confidential

Part | Specification

2

Theory of Operafion

OCP-IP Confidential

The Open Core Protocol interface addresses communications between the
functional units (or IP cores) that comprise a system on a chip. The OCP
provides independence from bus protocols without having to sacrifice high-
performance access to on-chip interconnects. By designing to the interface
boundary defined by the OCP, you can develop reusable IP cores without
regard for the ultimate target system.

Given the wide range of IP core functionality, performance and interface
requirements, a fixed definition interface protocol cannot address the full
spectrum of requirements. The need to support verification and test
requirements adds an even higher level of complexity to the interface. To
address this spectrum of interface definitions, the OCP defines a highly
configurable interface. The OCP’s structured methodology includes all of the
signals required to describe an IP cores’ communications including data flow,
control, and verification and test signals.

This chapter provides an overview of the concepts behind the Open Core
Protocol, introduces the terminology used to describe the interface, and offers
a high-level view of the protocol.

8 Open Core Protocol Specification

OCP-IP Confidential

Point-to-Point Synchronous Interface

To simplify timing analysis, physical design, and general comprehension, the
OCP is composed of uni-directional signals driven with respect to, and
sampled by, the rising edge of the OCP clock. The OCP is fully synchronous
(with the exception of reset) and contains no multi-cycle timing paths with
respect to the OCP clock. All signals other than the clock signal are strictly
point-to-point.

Bus Independence

A core utilizing the OCP can be interfaced to any bus. A test of any bus-
independent interface is to connect a master to a slave without an intervening
on-chip bus. This test not only drives the specification towards a fully
symmetric interface but helps to clarify other issues. For instance, device
selection techniques vary greatly among on-chip buses. Some use address
decoders, while generate independent device-select signals (analogous to a
board-level chip select). This complexity should be hidden from IP cores,
especially since in the directly-connected case there is no decode/selection
logic. OCP-compliant slaves receive device selection information integrated
into the basic command field.

Arbitration schemes vary widely. Since there is virtually no arbitration in the
directly-connected case, arbitration for any shared resource is the sole
responsibility of the logic on the bus side of the OCP. This permits OCP-
compliant masters to pass a command field across the OCP that the bus
interface logic converts into an arbitration request sequence.

Commands

There are two basic commands—Read and Write—and five command
extensions: WriteNonPost, Broadcast, ReadExclusive, ReadLinked, and
WriteConditional. The WriteNonPost and Broadcast commands have
semantics that are similar to the Write command. A WriteNonPost command
explicitly instructs the slave not to post a write. For the Broadcast command,
the master indicates that it is attempting to write to several or all remote
target devices that are connected on the other side of the slave. As such,
Broadcast is typically useful only for slaves that are in turn a master on
another communication medium (such as an attached bus).

The other command extensions—ReadExclusive, ReadLinked and WriteCon-
ditional—are used for synchronization between system initiators.
ReadExclusive is paired with Write or WriteNonPost, and has blocking
semantics. ReadLinked, used in conjunction with WriteConditional has non-
blocking (lazy) semantics. These synchronization primitives correspond to
those available natively in the instruction sets of different processors.

Theory of Operation 9

OCP-IP Confidential

Address/Data

Wide widths, characteristic of shared on-chip address and data buses, make
tuning the OCP address and data widths essential for area-efficient
implementation. Only those address bits that are significant to the IP core
should cross the OCP to the slave. The OCP address space is flat and
composed of 8-bit bytes (octets).

To increase transfer efficiencies, many IP cores have data field widths signifi-
cantly greater than an octet. The OCP supports a configurable data width to
allow multiple bytes to be transferred simultaneously. The OCP refers to the
chosen data field width as the word size of the OCP. The term word is used in
the traditional computer system context; that is, a word is the natural
transfer unit of the block. OCP supports word sizes of power-of-two and non-
power-of-two (as would be needed for a 12-bit DSP core). The OCP address is
a byte address that is word aligned.

Transfers of less than a full word of data are supported by providing byte
enable information that specifies which octets are to be transferred. Byte
enables are linked to specific data bits (byte lanes). Byte lanes are not
associated with particular byte addresses. This makes the OCP endian-
neutral, able to support both big and little-endian cores.

Pipelining
The OCP allows pipelining of transfers. To support this feature, the return of

read data and the provision of write data may be delayed after the presen-
tation of the associated request.

Response

The OCP separates requests from responses. A slave can accept a command
request from a master on one cycle and respond in a later cycle. The division
of request from response permits pipelining. The OCP provides the option of
having responses for Write commands, or completing them immediately
without an explicit response.

Burst

Burst support is essential for many IP cores, to provide high transfer
efficiency. The extended OCP supports annotation of transfers with burst
information. Bursts can either include addressing information for each
successive command (which simplifies the requirements for address
sequencing/burst count processing in the slave), or include addressing
information only once for the entire burst.

In-Band Information

Cores can pass core-specific information in-band in company with the other
information being exchanged. In-band extensions exist for requests and
responses, as well as read and write data. A typical use of in-band extensions
is to pass cacheable information or data parity.

10 Open Core Protocol Specification

OCP-IP Confidential

Tags

Tags are available in the OCP interface to control the ordering of responses.
Without tags, a slave must return responses in the order that the requests
were issued by the master. Similarly, writes must be committed in order. With
the addition of tags, responses can be returned out-of-order, and write data
can be committed out-of-order with respect to requests, as long as the
transactions target different addresses. (Refer to Section 4.7.1 on page 57 for
the case when requests from different tags of a thread target overlapping
addresses.) The tag links the response back to the original request.

Tagging is useful when a master core, such as a processor, can handle out-
of-order return, because it allows a slave core such as a DRAM controller to
service requests in the order that is most convenient, rather than the order in
which requests were sent by the master.

Out-of-order request and response delivery can also be enabled using
multiple threads. The major differences between threads and tags are that
threads can have independent flow control for each thread and have no
ordering rules for transactions on different threads. Tags, on the other hand,
exist within a single thread and are restricted to shared flow control. Tagged
transactions to overlapping addresses have to be committed in order but their
responses may be reordered if the transactions have different tag IDs (see
Section 4.7.1 on page 57). Implementing independent flow control requires
independent buffering for each thread, leading to more complex implemen-
tations. Tags enable lower overhead implementations for out-of-order return
of responses at the expense of some concurrency.

Threads and Connections

To support concurrency and out-of-order processing of transfers, the
extended OCP supports the notion of multiple threads. Transactions among
threads have no ordering requirements, and independent flow control from
one another. Transfers within a single thread must remain ordered unless
tags are in use. The concepts of threads and tags are hierarchical: each thread
has its own flow control, and ordering within a thread either follows the
request order strictly, or is governed by tags.

While the notion of a thread is a local concept between a master and a slave
communicating over an OCP, it is possible to globally pass thread information
from initiator to target using connection identifiers. Connection information
helps to identify the initiator and determine priorities or access permissions
at the target.

Interrupts, Errors, and other Sidelbband Signaling

While moving data between devices is a central requirement of on-chip
communication systems, other types of communications are also important.
Different types of control signaling are required to coordinate data transfers
(for instance, high-level flow control) or signal system events (such as
interrupts). Dedicated point-to-point data communication is sometimes
required. Many devices also require the ability to notify the system of errors
that may be unrelated to address/data transfers.

Theory of Operation 11

OCP-IP Confidential

The OCP refers to all such communication as sideband (or out-of-band)
signaling, since it is not directly related to the protocol state machines of the
dataflow portion of the OCP. The OCP provides support for such signals
through sideband signaling extensions.

Errors are reported across the OCP using two mechanisms. The error
response code in the response field describes errors resulting from OCP
transfers that provide responses. Write-type commands without responses
cannot use the in-band reporting mechanism. The second method for
reporting errors across the OCP uses out-of band error fields. These signals
report more generic sideband errors, including those associated with posted
write commands.

Two additional groups of sideband signals—the reset signal group and the
connection signal group—are used to control the state of the interface itself.
The reset signals enable the master and/or slave to immediately transition
the interface from normal operation into a reset state, independently from any
activity on the dataflow signals. The connection signals allow the master and
slave to cooperate to cleanly achieve quiescence before putting the interface
into a disconnected state where none of the other in-band nor sideband
signals have meaning, except for the OCP clock.

Signals and Encoding

3.1

3.1.1

OCP-IP Confidential

OCP interface signals are grouped into dataflow, sideband, and test signals.
The dataflow signals are divided into five groups: basic signals, simple
extensions, burst extensions, tag extensions, and thread extensions. A small
set of the signals from the basic dataflow group are required in all OCP config-
urations. The remaining dataflow signals are optional; optional signals can be
configured as needed to support additional core communication
requirements. All sideband and test signals are optional.

The OCP is a synchronous interface with a single clock signal. All OCP
signals, other than the clock and reset, are driven with respect to, and
sampled by, the rising edge of the OCP clock. Except for clock, OCP signals
are strictly point-to-point and uni-directional. The complete set of OCP
signals are shown in Figure 4 on page 36.

Dataflow Signals

The dataflow signals consist of a small set of required signals and a number
of optional signals that can be configured to support additional core
communication requirements. The dataflow signals are grouped into five
groups: basic signals, simple extensions (options such as byte enables and in-
band information), burst extensions (support for bursting), tag extensions (re-
ordering support), and thread extensions (multi-threading support).

The naming conventions for dataflow signals use the prefix M for signals
driven by the OCP master and S for signals driven by the OCP slave.

Basic Signals

Table 1 lists the basic OCP signals. Only Clk and MCmd are required. The
remaining OCP signals are optional.

14 Open Core Protocol Specification

OCP-IP Confidential

Table 1 Basic OCP Signals
Name Width Driver Function
Clk 1 varies Clock input
EnableClk 1 varies Enable OCP clock
MAddr configurable master Transfer address
MCmd 3 master Transfer command
MData configurable master Write data
MDataVvalid 1 master Write data valid
MRespAccept 1 master Master accepts
response
SCmdAccept 1 slave Slave accepfts transfer
SData configurable slave Read data
SDataAccept 1 slave Slave accepts write
data
SResp 2 slave Transfer response
Clk

Input clock signal for the OCP clock. The rising edge of the OCP clock is
defined as a rising edge of Clk that samples the asserted EnableClk.
Falling edges of Clk and any rising edge of Clk that does not sample
EnableClk asserted do not constitute rising edges of the OCP clock.

EnableClk

EnableClk indicates which rising edges of Clk are the rising edges of the
OCEP clock, that is. which rising edges of Clk should sample and advance
interface state. Use the enableclk parameter to configure this signal.
EnableClk is driven by a third entity and serves as an input to both the
master and the slave.

When enableclk is set to O (the default), the EnableClk signal is not
present and the OCP behaves as if EnableClk is constantly asserted. In
that case all rising edges of Clk are rising edges of the OCP clock.

MAddr

The Transfer address, MAddr, specifies the slave-dependent address of
the resource targeted by the current transfer. To configure this field into
the OCP, use the addr parameter. To configure the width of this field, use
the addr_wdth parameter.

MAddr is a byte address that must be aligned to the OCP word size
(data_wdth). The parameter data_wdth defines a minimum addr_wdth
value that is based on the data bus byte width, and is defined as:

min_addr_wdth = max(1, floor(logs(data_wdth)) - 2)

Signals and Encoding 15

OCP-IP Confidential

If the OCP word size is larger than a single byte, the aggregate is
addressed at the OCP word-aligned address and the lowest order address
bits are hardwired to 0. If the OCP word size is not a power-of-two, the
address is the same as it would be for an OCP interface with a word size
equal to the next larger power-of-two.

MCmd
Transfer command. This signal indicates the type of OCP transfer the
master is requesting. Each non-idle command is either a read or write
type request, depending on the direction of data flow. Commands are
encoded as follows.

Table 2 Command Encoding

MCmd[2:0] Command Mnemonic Request Type
0O |0 |0 Idle IDLE (none)

0O [0 |1 Write WR write

o |1 |0 Read RD read

0 |1 1 ReadEx RDEX read

1 (0 |0 ReadLinked RDL read

1T [0 |1 WriteNonPost WRNP write

1 1 0 WriteConditional WRC write

1 1 1 Broadcast BCST write

The set of allowable commands can be limited using the write_enable,
read_enable, readex_enable,writenonpost_enable, rdlwrc_enable,
and broadcast_enable parameters as described in Section 4.9.1 on
page 59.

MData
Write data. This field carries the write data from the master to the slave.
The field is configured into the OCP using the mdata parameter and its
width is configured using the data_wdth parameter. The width is not
restricted to multiples of 8.

MDataValid
Write data valid. When set to 1, this bit indicates that the data on the
MData field is valid. Use the datahandshake parameter to configure this
field into the OCP.

MRespAccept
Master response accept. The master indicates that it accepts the current
response from the slave with a value of 1 on the MRespAccept signal. Use
the respaccept parameter to enable this field into the OCP.

SCmdAccept
Slave accepts transfer. A value of 1 on the SCmdAccept signal indicates
that the slave accepts the master’s transfer request. To configure this field
into the OCP, use the cmdaccept parameter.

16 Open Core Protocol Specification

3.1.2

OCP-IP Confidential

SData
This field carries the requested read data from the slave to the master. The
field is configured into the OCP using the sdata parameter and its width

is configured using the data_wdth parameter. The width is not restricted
to multiples of eight.

SDataAccept
Slave accepts write data. The slave indicates that it accepts pipelined write
data from the master with a value of 1 on SDataAccept. This signal is
meaningful only when datahandshake is in use. Use the dataaccept
parameter to configure this field into the OCP.

SResp

Response field from the slave to a transfer request from the master. The
field is configured into the OCP using the resp parameter. Response
encoding is as follows.

Table 3 Response Encoding

SResp[1:0] Response Mnemonic
0 0 No response NULL

0 1 Data valid / accept DVA

1 0 Request failed FAIL

1 1 Response error ERR

The use of responses is explained in Section 4.4 on page 49. FAIL is a non-
error response that indicates a successful transfer and is reserved for a
response to a WriteConditional command for which the write is not
performed, as described in Section 4.4 on page 49.

Simple Extensions

Table 4 lists the simple OCP extensions. The extensions add to the OCP
interface address spaces, byte enables, and additional core-specific
information for each phase.

Table 4 Simple OCP Extensions

Name Width Driver Function

MAddrSpace configurable master Address space

MByteEn configurable master Request phase byte enables

MDataByteEn configurable master Datahandshake phase write byte
enables

MDatalnfo configurable master Additional information transferred
with the write data

Signals and Encoding 17

Name Width Driver Function

MReqInfo configurable master Additional information fransferred

with the request

SDatalnfo configurable slave Additional information transferred

with the read data

SRespInfo configurable slave Additional information fransferred

with the response

MAddrSpace

This field specifies the address space and is an extension of the MAddr
field that is used to indicate the address region of a transfer. Examples of
address regions are the register space versus the regular memory space of
a slave or the user versus supervisor space for a master.

The MAddrSpace field is configured into the OCP using the addrspace
parameter. The width of the MAddrSpace field is configured with the
addrspace_wdth parameter. While the encoding of the MAddrSpace field
is core-specific, it is recommended that slaves use O to indicate the
internal register space.

MByteEn

Byte enables. This field indicates which bytes within the OCP word are
part of the current transfer. See Section 4.4.1 on page 50 for more detail
on request and datahandshake phase byte enables and their relationship.
There is one bit in MByteEn for each byte in the OCP word. Setting
MByteEn[n] to 1 indicates that the byte associated with data wires [(8n +
7):8n] should be transferred. The MByteEn field is configured into the OCP
using the byteen parameter and is allowed only if data_wdth is a multiple
of 8 (that is, the data width is an integer number of bytes).

The allowable patterns on MByteEn can be limited using the
force_aligned parameter as described on page 60.

MDataByteEn

Write byte enables. This field indicates which bytes within the OCP word
are part of the current write transfer. See Section 4.4.1 on page 50 for
more detail on request and datahandshake phase byte enables and their
relationship. There is one bit in MDataByteEn for each byte in the OCP
word. Setting MDataByteEn[n] to 1 indicates that the byte associated with
MData wires [(8n + 7):8n] should be transferred. The MDataByteEn field
is configured into the OCP using the mdatabyteen parameter. Setting
mdatabyteen to 1 is only allowed if datahandshake is 1, and only if
data_wdth is a multiple of 8 (that is, the data width is an integer number
of bytes).

The allowable patterns on MDataByteEn can be limited using the
force_aligned parameter as described on page 60.

MDatalnfo

OCP-IP Confidential

Extra information sent with the write data. The master uses this field to
send additional information sequenced with the write data. The encoding
of the information is core-specific. To be interoperable with masters that

18 Open Core Protocol Specification

OCP-IP Confidential

do not provide this signal, design slaves to be operable in a normal mode
when the signal is tied off to its default tie-off value as specified in

Table 16 on page 31. Sample uses are data byte parity or error correction
code values. Use the mdatainfo parameter to configure this field into the
OCP, and the mdatainfo_wdth parameter to configure its width.

This field is divided in two: the low-order bits are associated with each
data byte, while the high-order bits are associated with the entire write
data transfer. The number of bits to associate with each data byte is
configured using the mdatainfobyte_wdth parameter. The low-order
mdatainfobyte_ wdth bits of MDatalnfo are associated with the
MData[7:0] byte, and so on.

Figure 2 MDatalnfo Field

Associated with entire Associated with Associated with Associated with
write data transfer MData [(8n+7):8n] MData [15:8] MData [7:0]

N \ f

mdatainfobyte_wdth

>

mdatainfo_wdth

MReqInfo

Extra information sent with the request. The master uses this field to send
additional information sequenced with the request. The encoding of the
information is core-specific. To be interoperable with masters that do not
provide this signal, design slaves to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are cacheable storage attributes or other access
mode information. Use the reginfo parameter to configure this field into
the OCP, and the reginfo_wdth parameter to configure its width.

SDatalnfo

Extra information sent with the read data. The slave uses this field to send
additional information sequenced with the read data. The encoding of the
information is core-specific. To be interoperable with slaves that do not
provide this signal, design masters to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are data byte parity or error correction code values.
Use the sdatainfo parameter to configure this field into the OCP, and the
sdatainfo_wdth parameter to configure its width.

This field is divided into two pieces: the low-order bits are associated with
each data byte, while the high-order bits are associated with the entire
read data transfer. The number of bits to associate with each data byte is

Signals and Encoding 19

configured using the sdatainfobyte_wdth parameter. The low-order
sdatainfobyte_wdth bits of SDatalnfo are associated with the

SData[7:0] byte, and so on.

Figure 3 SDatalnfo Field

Associated with entire
read data transfer

N

Associated with
SData [(8n+7):8n]

\

Associated with Associated with
SData [15:8] SData [7:0]

f

NN

sdatainfobyte wdth

SResplInfo

sdatainfo_wdth

>

Extra information sent with the response. The slave uses this field to send
additional information sequenced with the response. The encoding of the
information is core-specific. To be interoperable with slaves that do not
provide this signal, design masters to be operable in a normal mode when
the signal is tied off to its default tie-off value as specified in Table 16 on
page 31. Sample uses are status or error information such as FIFO full or
empty indications. Use the respinfo parameter to configure this field into
the OCP, and the respinfo_wdth parameter to configure its width.

3.1.3 Burst Extensions

Table 5 lists the OCP burst extensions. The burst extensions allow the
grouping of multiple transfers that have a defined address relationship. The
burst extensions are enabled only when MBurstLength is included in the
interface, or tied off to a value other than one.

OCP-IP Confidential

Table 5 OCP Burst Extensions

Name Width Driver Function

MAtomicLength | configurable master Length of atomic burst

MBlockHeight configurable master Height of 2D block burst

MBlocksStride configurable master Address offset between 2D block
rows

MBurstLength configurable master Burst length

MBurstPrecise 1 master Given burst length is precise

MBurstSeq 3 master Address sequence of burst

20 Open Core Protocol Specification

OCP-IP Confidential

Name Width Driver Function
MBurstSingleReq | 1 master Burst uses single request/ multiple
data protocol

MDataLast 1 master Last write data in burst
MDataRowlast 1 master Last write data in row

MReqgLast 1 master Last request in burst
MRegRowLast 1 master Last request in row

SResplLast 1 slave Last response in burst
SRespRowLast 1 slave Last response in row
MAtomicLength

This field indicates the minimum number of transfers within a burst that
are to be kept together as an atomic unit when interleaving requests from
different initiators onto a single thread at the target. To configure this field
into the OCP, use the atomiclength parameter. To configure the width of
this field, use the atomiclength_wdth parameter. A binary encoding of

the number of transfers is used. A O value is not legal for MAtomicLength.

MBlockHeight

This field indicates the number of rows of data to be transferred in a two-
dimensional block burst (the height of the block of data). A binary
encoding of the height is used. To configure this field into the OCP, use
the blockheight parameter. To configure the width of this field, use the
blockheight_wdth parameter.

MBIlockStride

This field indicates the address difference between the first data word in
each consecutive row in a two-dimensional block burst. The stride value
is a binary encoded byte address offset and must be aligned to the OCP
word size (data_wdth). To configure this field into the OCP, use the
blockstride parameter. To configure the width of this field, use the
blockstride_wdth parameter.

MBurstLength

For a BLCK burst (see Table 6), this field indicates the number of transfers
for a row of the burst and stays constant throughout the burst. A BLCK
burst is always precise. For a precise non-BLCK burst, this field indicates
the number of transfers for the entire burst and stays constant
throughout the burst. For imprecise bursts, the value indicates the best
guess of the number of transfers remaining (including the current
request), and may change with every request. To configure this field into
the OCP, use the burstlength parameter. To configure the width of this
field, use the burstlength_wdth parameter. A binary encoding of the
number of transfers is used. O is not a legal encoding for MBurstLength.

MBurstPrecise

This field indicates whether the precise length of a burst is known at the
start of the burst or not. When set to 1, MBurstLength indicates the
precise length of the burst during the first request of the burst. To

Signals and Encoding 21

OCP-IP Confidential

configure this field into the OCP, use the burstprecise parameter. If set
to 0, MBurstLength for each request is a hint of the remaining burst
length.

MBurstSeq

This field indicates the sequence of addresses for requests in a burst. To
configure this field into the OCP, use the burstseqg parameter. The
encodings of the MBurstSeq field are shown in Table 6. The definition of
the address sequences is described in Section 4.6.1 on page 53.

Table 6 MBurstSeq Encoding

M BurstSeq[2:0] Burst Sequence Mnemonic
0 0 0 Incrementing INCR
0 0 1 Custom (packed) DFLT1
0 1 0 Wrapping WRAP
0 1 1 Custom (not packed) DFLT2
1 0 0 Exclusive OR XOR

1 0 1 Streaming STRM
1 1 0 Unknown UNKN
1 1 1 2-dimensional Block BLCK
MBurstSingleReq

The burst has a single request with multiple data transfers. This field
indicates whether the burst has a request per data transfer, or a single
request for all data transfers. To configure this field into the OCP, use the
burstsinglereq parameter. When this field is set to O, there is a one-to-
one association of requests to data transfers; when set to 1, there is a
single request for all data transfers in the burst.

MDataLast

Last write data in a burst. This field indicates whether the current write
data transfer is the last in a burst. To configure this field into the OCP,
use the datalast parameter with datahandshake set to 1. When this
field is set to O, more write data transfers are coming for the burst; when
set to 1, the current write data transfer is the last in the burst.

MDataRowLast

Last write data in a row. This field identifies the last transfer in a row. The
last data transfer in a burst is always considered the last in a row, and
BLCK burst sequences also have a last in a row transfer after every
MBurstLength transfers. To configure this field into the OCP, use the
datarowlast parameter. If this field is set to O, additional write data
transfers can be expected for the current row; when set to 1, the current
write data transfer is the last in the row.

22 Open Core Protocol Specification

MReqLast
Last request in a burst. This field indicates whether the current request
is the last in this burst. To configure this field into the OCP, use the
reglast parameter. When this field is set to O, more requests are coming
for this burst; when set to 1, the current request is the last in the burst.

MReqRowLast
Last request in a row. This field identifies the last request in a row. The
last request in a burst is always considered the last in a row, and BLCK
burst sequences also have a last-in-a-row request after every
MBurstLength requests. To configure this field into the OCP, use the
regrowlast parameter. When this field is set to O, more requests can be
expected for the current row; when set to 1, the current request is the last
in the row.

SRespLast
Last response in a burst. This field indicates whether the current
response is the last in this burst. To configure this field into the OCP, use
the resplast parameter. When the field is set to O, more responses are
coming for this burst; when set to 1, the current response is the last in
the burst.

SRespRowLast
Last response in a row. This field identifies the last response in a row. The
last response in a burst is always considered the last in a row, and BLCK
burst sequences also have a last in a row response after every
MBurstLength responses. Use the resprowlast parameter to configure
this field. When this field is set to 0, more can be expected for the current
row; when set to 1, the current response is the last in the row.

3.1.4 Tag Extensions

OCP-IP Confidential

Table 7 lists OCP tag extensions, which add support for tagging OCP transfers
to enable out-of-order responses and write data commit. The binary encoded
*TaglD signals must each carry a value in the range O to (#tags-1) where
#tags is the value specified by the tags parameter.

Table 7 OCP Tag Extensions

Name Width Driver Function

MDataTagID configurable master Ordering tag for write data
MTagID configurable master Ordering tag for request
MTagInOrder 1 master Do not reorder this request
STagID configurable slave Ordering tag for response
STagIinOrder 1 slave This response is not reordered

Signals and Encoding 23

3.1.5

OCP-IP Confidential

MDataTaglD
Write data tag. This variable-width field provides the tag associated with
the current write data. The field carries the binary-encoded tag value.
MDataTagID is required if tags is greater than 1 and the datahandshake
parameter is 1. The field width is [log,(tags) |.

MTagID
Request tag. This variable-width field provides the tag associated with the
current transfer request. If tags is greater than 1, this field is enabled.
The field width is [log,(tags) |.

MTagInOrder
Assertion of this single-bit field indicates that the current request should
not be reordered with respect to other requests that had this field
asserted. This field is enabled by the taginorder parameter. Both
MTagInOrder and STagInOrder are present in the interface, or else neither
may be present.

STagID
Response tag. This variable-width field provides the tag associated with
the current transfer response. This field is enabled if tags is greater than
1, and the resp parameter is set to 1. The field width is [logy(tags) | .

STagInOrder
Assertion of this single-bit field indicates that the current response is
associated with an in-order request and was not reordered with respect to
other requests that had MTagInOrder asserted. This field is enabled if
both the taginorder and the resp parameters are set to 1.

Thread Extensions

Table 8 shows a list of OCP thread extensions that add support for multi-
threading of the OCP interface. Thread numbering begins at O and is
sequential. The binary encoded *ThreadID must carry a value less than the
threads parameter.

Table 8 OCP Thread Extensions

Name Width Driver Function

MConnlID configurable master Connection identifier
MDataThreadID configurable master Write data thread identifier
MThreadBusy configurable master Master thread busy
MThreadID configurable master Request thread identifier
SDataThreadBusy configurable slave Slave write data thread busy
SThreadBusy configurable slave Slave request thread busy
SThreadID configurable slave Response thread identifier

24 Open Core Protocol Specification

MConnID
Connection identifier. This variable-width field provides the binary
encoded connection identifier associated with the current transfer
request. To configure this field use the connid parameter. The field width
is configured with the connid_wdth parameter.

MDataThreadID
Write data thread identifier. This variable-width field provides the thread
identifier associated with the current write data. The field carries the
binary-encoded value of the thread identifier.

MDataThreadID is required if threads is greater than 1 and the
datahandshake parameter is set to 1. MDataThreadID has the same
width as MThreadID and SThreadID.

MThreadBusy
Master thread busy. The master notifies the slave that it cannot accept
any responses associated with certain threads. The MThreadBusy field is
a vector (one bit per thread). A value of 1 on any given bit indicates that
the thread associated with that bit is busy. Bit O corresponds to thread O,
and so on. The width of the field is set using the threads parameter. It is
legal to enable a one-bit MThreadBusy interface for a single-threaded
OCP. To configure this field, use the mthreadbusy parameter. See
Section 4.3.2.4 on page 44 for a description of the flow control options
associated with MThreadBusy.

MThreadID
Request thread identifier. This variable-width field provides the thread
identifier associated with the current transfer request. If threads is
greater than 1, this field is enabled. The field width is the next whole
integer of [log,(threads) | .

SDataThreadBusy
Slave write data thread busy. The slave notifies the master that it cannot
accept any new datahandshake phases associated with certain threads.
The SDataThreadBusy field is a vector, one bit per thread. A value of 1 on
any given bit indicates that the thread associated with that bit is busy. Bit
O corresponds to thread O, and so on.

The width of the field is set using the threads parameter. It is legal to
enable a one-bit SDataThreadBusy interface for a single-threaded OCP.
To configure this field, use the sdatathreadbusy parameter. See
Section 4.3.2.4 on page 44 for a description of the flow control options
associated with SDataThreadBusy.

SThreadID
Response thread identifier. This variable-width field provides the thread
identifier associated with the current transfer response. This field is
enabled if threads is greater than 1 and the resp parameter is set to 1.
The field width is [1og,(threads) | .

SThreadBusy
Slave thread busy. The slave notifies the master that it cannot accept any
new requests associated with certain threads. The SThreadBusy field is a
vector, one bit per thread. A value of 1 on any given bit indicates that the

OCP-IP Confidential

Signals and Encoding 25

3.2 Sideband Signals

OCP-IP Confidential

thread associated with that bit is busy. Bit O corresponds to thread 0, and
so on. The width of the field is set using the threads parameter. It is legal
to enable a one-bit SThreadBusy interface for a single-threaded OCP. To
configure this field, use the sthreadbusy parameter. See Section 4.3.2.4
on page 44 for a description of the flow control options associated with

SThreadBusy.

Sideband signals are OCP signals that are not part of the dataflow phases,
and so can change asynchronously with the request/response flow but are
generally synchronous to the rising edge of the OCP clock. Sideband signals
convey control information such as reset, interrupt, error, and core-specific
flags. They also exchange control and status information between a core and
an attached system. All sideband signals are optional except for reset signals.
Either the MReset_n or the SReset_n signal must be present.

Table 9 lists the OCP sideband extensions.

Table 9 Sideband OCP Signals

Name Width Driver Function

MConnect 2 master Master connection state

MError 1 master Master Error

MFlag configurable | master Master flags

MReset_n 1 master Master reset

SConnect 1 slave Slave connection vote

SError 1 slave Slave error

SFlag configurable |slave Slave flags

SInterrupt 1 slave Slave interrupt

SReset_n 1 slave Slave reset

SWait 1 slave Slave delays connection change
ConnectCap 1 tie-off Connection capability tie-off
Control configurable | system Core control information
ConftrolBusy 1 core Hold control information
ConfrolWr 1 system Control information has been written
Status configurable | core Core status information

StatusBusy 1 core Status information is not consistent
StatusRd 1 system Status information has been read

26 Open Core Protocol Specification

3.2.1 Connection, Reset, Interrupt, Error, and Core-Specific
Flag Signals

MConnect

Master connection state. This signal indicates the current connection
state of the interface. The master changes this state based upon input
from the slave SConnect signal and the master’s desired connection state,
but state transitions must respect the slave SWait signal. Connection
states are encoded as shown in Table 10.

Table 10 Connection State Encoding

MConnect[1:0] | Sate Mnemonic | Connected?

0 0 Disconnected by master M_OFF No

0 1 Waiting to fransition M_WAIT Matches prior state
1 0 Disconnected by slave M_DISC No

1 1 Connected M_CON Yes

The M_WAIT state is transient. When the master is changing the
connection state between any two of the other states, it must enter
M_WAIT if the slave is asserting SWait (S_WAIT). The connection status of
the interface does not change while in M_WAIT. The master can only
transition to a non-transient connection state once it samples SWait
negated (S_OK). The MConnect signal is configured by the connection
parameter and must maintain the value M_CON if the ConnectCap tie-off
is 0. If ConnectCap is 1, the reset value of MConnect is M_OFF.

SConnect

Slave connection vote. This signal indicates the slave’s willingness to have
the master in the M_CON state. The slave’s vote is encoded as follows.

Table 11 Slave Connection Vote Encoding
SConnect Connection Vote M nemonic
0 Vote to disconnect | S_DISC

1 Vote to connect S_CON

The SConnect signal is configured by the connection parameter and
must maintain the value S_CON if the ConnectCap tie-off is O. If
ConnectCap is 1, the reset value of SConnect is S_DISC.

SWait

OCP-IP Confidential

Slave delays connection change. This signal allows the slave to force the
master to transition through the M_WAIT state before changing the
connection state to M_OFF, M_DISC, or M_CON. This signal is encoded as
follows:

Signals and Encoding 27

OCP-IP Confidential

Table 12 Slave Connection Change Delay Encoding

SWait Function Mnemonic
0 Allow connection stafus change S_OK
1 Delay connection status change S_WAIT

The SWait signal is configured by the connection parameter and must
maintain the value S_OK if the ConnectCap tie-off is 0. If ConnectCap is
1, the reset value of SWait is S_OK.

ConnectCap
Connection capability tie-off. This signal is tied off at component
instantiation to indicate whether the interface supports the connection
state machine. Tie ConnectCap to logic O on a master or slave if the
connected slave or master, respectively, does not implement the
connection protocol. In such case, the interface is always connected (i.e.
it behaves as if in the M_CON state). If ConnectCap is tied to logic 1, then
both master and slave must support the connection protocol. The
ConnectCap tie-off signal is configured by the connection parameter and
has no default value.

MError
Master error. When the MError signal is set to 1, the master notifies the
slave of an error condition. The MError field is configured with the merror
parameter.

MFlag
Master flags. This variable-width set of signals allows the master to
communicate out-of-band information to the slave. Encoding is
completely core-specific.

To configure this field into the OCP, use the mflag parameter. To
configure the width of this field, use the mflag_wdth parameter.

MReset_n
Master reset. The MReset_n signal is active low, as shown in Table 13. The
MReset_n field is enabled by the mreset parameter.

Table 13 MReset Signal

MReset_n Function

0 Reset Active

1 Reset Inactive

SError
Slave error. With a value of 1 on the SError signal the slave indicates an
error condition to the master. The SError field is configured with the
serror parameter.

28 Open Core Protocol Specification

3.2.2

OCP-IP Confidential

SFlag
Slave flags. This variable-width set of signals allows the slave to
communicate out-of-band information to the master. Encoding is
completely core-specific.

To configure this field into the OCP, use the sflag parameter. To
configure the width of this field, use the sflag_wdth parameter.

SInterrupt
Slave interrupt. The slave may generate an interrupt with a value of 1 on
the Sinterrupt signal. The SInterrupt field is configured with the
interrupt parameter.

SReset_n
Slave reset. The SReset_n signal is active low, as shown in Table 14. The
SReset_n field is enabled by the sreset parameter.

Table 14 SReset Signal

SReset_n Function
0 Reset Active
1 Reset Inactive

Control and Status Signals

The remaining sideband signals are designed for the exchange of control and
status information between an IP core and the rest of the system. They make
sense only in this environment, regardless of whether the IP core acts as a
master or slave across the OCP interface.

Control
Core control information. This variable-width field allows the system to
drive control information into the IP core. Encoding is core-specific.

Use the control parameter to configure this field into the OCP. Use the
control_wdth parameter to configure the width of this field.

ControlBusy
Core control busy. When this signal is set to 1, the core tells the system
to hold the control field value constant. Use the controlbusy parameter
to configure this field into the OCP.

ControlWr
Core control event. This signal is set to 1 by the system to indicate that
control information is written by the system. Use the controlwr
parameter to configure this field into the OCP.

Status
Core status information. This variable-width field allows the IP core to
report status information to the system. Encoding is core-specific.

Use the status parameter to configure this field into the OCP. Use the
status_wdth parameter to configure the width of this field.

Signals and Encoding 29

3.3

3.3.1

OCP-IP Confidential

StatusBusy
Core status busy. When this signal is set to 1, the core tells the system to
disregard the status field because it may be inconsistent. Use the
statusbusy parameter to configure this field into the OCP.

StatusRd
Core status event. This signal is set to 1 by the system to indicate that
status information is read by the system. To configure this field into the
OCP, use the statusrd parameter.

Test Signals

The test signals add support for scan, clock control, and IEEE 1149.1 (JTAG).
All test signals are optional.

Table 15 Test OCP Signals

Name Width Driver Function

Scanctrl configurable system Scan confrol signals
Scanin configurable system Scan dafain
Scanout configurable core Scan data out
ClkByp 1 system Enable clock bypass mode
TestClk 1 system Test clock

TCK 1 system Test clock

TDI 1 system Test datain

DO 1 core Test data out

™S 1 system Test mode select
TRST_N 1 system Test reset

Scan Interface

The Scanctrl, Scanin, and Scanout signals together form a scan interface into
a given IP core.

Scanctrl
Scan mode control signals. Use this variable width field to control the scan
mode of the core. Set scanport to 1 to configure this field into the OCP
interface. Use the scanctrl_wdth parameter to configure the width of
this field.

Scanin
Scan data in for a core’s scan chains. Use the scanport parameter, to
configure this field into the OCP interface and scanport_wdth to control
its width.

30 Open Core Protocol Specification

3.3.2

3.3.3

OCP-IP Confidential

Scanout
Scan data out from the core’s scan chains. Use the scanport parameter
to configure this field into the OCP interface and scanport_wdth to
control its width.

Clock Control Interface

The ClkByp and TestClk signals together form the clock control interface into
a given IP core. This interface is used to control the core’s clocks during scan
operation.

ClkByp
Enable clock bypass signal. When set to 1, this signal instructs the core
to bypass the external clock source and use TestClk instead. Use the
clkctrl_enable parameter to configure this signal into the OCP
interface.

TestClk
A gated test clock. This clock becomes the source clock when ClkByp is
asserted during scan operations. Use the clkctrl_enable parameter to
configure this signal into the OCP interface.

Debug and Test Interface

The TCK, TDI, TDO, TMS, and TRST_N signals together form an IEEE 1149
debug and test interface for the OCP.

TCK
Test clock as defined by IEEE 1149.1. Use the jtag_enable parameter to
add this signal to the OCP interface.

TDI
Test data in as defined by IEEE 1149.1. Use the jtag_enable parameter
to add this signal to the OCP interface.

TDO
Test data out as defined by IEEE 1149.1. Use the jtag_enable parameter
to add this signal to the OCP interface.

TMS
Test mode select as defined by IEEE 1149.1. Use the jtag_enable
parameter to add this signal to the OCP interface.

TRST_N
Test logic reset signal. This is an asynchronous active low reset as defined
by IEEE 1149.1. Use the jtagtrst_enable parameter to add this signal
to the OCP interface.

Signals and Encoding 31

3.4 Signal Configuration

The set of signals making up the OCP interface is configurable to match the
characteristics of the IP core. Throughout this chapter, configuration
parameters were mentioned that control the existence and width of various
OCP fields. Table 16 summarizes the configuration parameters, sorted by
interface signal group. For each signal, the table also specifies the default
constant tie-off, which is the inferred value of the signal if it is not configured
into the OCP interface and if no other constant tie-off is specified.

For the ControlBusy, EnableClk, MRespAccept, SCmdAccept, SDataAccept,
MThreadBusy, SThreadBusy, SDataThreadBusy, MReset_n, SReset_n,
SInterrupt, and StatusBusy signals, the default tie-off is also the only legal
tie-off.

Table 16 OCP Signal Configuration Parameters
Parameter to add Parameter to Default
Group Signal signal to interface control width Tie-off
Basic Clk Required Fixed n/a
EnableClk enableclk Fixed 1
MAddr addr addr_wdth 0
MCmd Required Fixed n/a
MData mdata data_wdth 0
MDataVvalid datahandshake Fixed n/a
I\/IRespAccepH respaccept Fixed 1
SCmdAccept cmdaccept Fixed 1
SDatq! sdata data_wdth 0
SData Accep’r2 dataaccept Fixed 1
SResp resp Fixed n/a
Simple MAddrSpace addrspace addrspace_wdth 0
MByteEn3 byteen data_wdth all 1s
MDataByteEn? mdatabyteen data_wdth all 1s
MDatalnfo mdatainfo mdatainfo_wdth® 0
MRegInfo reqinfo reqinfo_wdth 0
SDatalnfo! sdatainfo sdatainfo_wdth® 0
SRespInfo! respinfo respinfo_wdth 0

OCP-IP Confidential

32 Open Core Protocol Specification

Parameter to add Parameter to Default
Group Signal signal to interface control width Tie-off
Burst MAtomicLength’ atomiclength atomiclength_wdth 1
MBlockHeight’-8 plockheight blockheight_ wdth? 1
MBlockStride’ 8 blockstride blockstride_wdth 0
MBurstLength burstlength burstlength_wdath10 1
MBurstPrecise’- 1 burstprecise Fixed 1
MBurstSeq’ burstseq Fixed INCR
MBurstSingleReq’- 12 bursfsinglereq Fixed 0
MDatalast’ 13 datalast Fixed n/a
MDataRowlLast’- & 13- 14 datarowlast Fixed n/a
MRegLast’ reglast Fixed n/a
MRegRowLast’ 8 19 reqrowlast Fixed n/a
SRespLast! 7 resplast Fixed n/a
SRespRowLast! 7816 resprowlast Fixed n/a
Tag MDataTagID!’ fags>1 and datahandshake tags 0
MTagID tags>1 tags 0
MTagInOrder'® taginorder Fixed 0
STagID tags>1 and resp tags 0
STaglnOrder'? taginorder and resp Fixed 0
Thread MConnID connid connid_wdth 0
MDataThreadID threads>1 and datahandshake threads 0
MThreadBusy ' 20 mthreadbusy threads 0
MThreadID threads>1 threads 0
SDataThreadBusy?! sdatathreadbusy threads 0
SThreadBusy?2 sthreadbusy threads 0
SThreadID threads>1 and resp threads 0

OCP-IP Confidential

Signals and Encoding 33

Parameter to add Parameter to Default
Group Signal signal to interface control width Tie-off
Sideband ConnectCap connection Fixed n/a
Control control control_wdth 0
ControlBusy?? confrolbusy Fixed 0
Controlwr24 conftrolwr Fixed n/a
MConnect2® connection 2 M_CON
MError merror Fixed 0
MFlag mflag mflag_wdth 0
MReset_n mreset Fixed 1
SConnect?® connection 1 S_CON
SError serror Fixed 0
SFlag sflag sflag_wdth 0
Sinterrupt interrupt Fixed 0
SReset_n sreset Fixed 1
Status status status_wdth
StatusBusy2® statusbusy Fixed
StatusRa2’ statusrd Fixed n/a
SWait25 connection 1 S_OK

OCP-IP Confidential

34 Open Core Protocol Specification

Parameter to add Parameter to Default
Group Signal signal to interface control width Tie-off
Test ClkByp clkectrl_enable Fixed n/a
Scanctrl scanport scanctrl_wdth n/a
Scanin scanport scanport_wdth n/a
Scanout scanport scanport_wdth n/a
TCK jtag_enable Fixed n/a
TDI jtag_enable Fixed n/a
DO jtag_enable Fixed n/a
TestClIk clkctrl_enable Fixed n/a
T™MS jtag_enable Fixed n/a
TRST_N28 jtagtrst_enable Fixed n/a
1 MRespAccept, MThreadBusy, SData, SDatalnfo, SResplnfo, SRespLast, and SRespRowL ast may be included only if the resp

9

10
11
12

13
14
15
16
17
18
19
20
21

22
23
24

parameter is set to 1.
SDataA ccept can be included only if datahandshake isset to 1.

MByteEn has awidth of data_wdth/8 and can only be included when either mdata or sdataissettoland data_wdthis
an integer multiple of 8.

MDataByteEn has awidth of data_wdth/8 and can only beincluded whenmdata issetto 1, datahandshakeissetto 1, and
data_wdth isan integer multiple of 8.

mdatainfo_wdthmustbe>mdatainfobyte_wdth * data_wdth/8 andcanbeusedonlyif data_wdthisamultiple
of 8. mdatainfobyte_wdth specifiesthe partitioning of MDataInfo into transfer-specific and per-byte fields.

sdatainfo_wdthmustbe>sdatainfobyte_wdth * data_wdth/8 andcanbeusedonlyif data_wdthisamultiple
of 8. sdatainfobyte_wdth specifies the partitioning of SDatal nfo into transfer-specific and per-byte fields.

MAtomicLength, MBlockHeight, MBlockStride, MBurstPrecise, M BurstSeq, MBurstSingleReq, MDatal ast, MDataRowL ast,
MRegL ast, MRegRowL ast, SRespL ast, and SRespRowL ast may be included in theinterface or tied off to non-default values only
if MBurstLength isincluded or tied off to ava ue other than 1.

MBlockHeight, MBlockStride, MDataRowL ast, MRegRowL ast, and SRespRowL ast may be included or tied off to non-default
valuesonly if burstseqg_blck_enableissetto 1 and MBurstPreciseisincluded or tied off to avalue of 1.

blockheight_wdth can never be 1.
burstlength_wdth can never be 1.
If no sequences other than WRAP, XOR, or BLCK are enabled, MBurstPrecise must be tied off to 1.

If any write-type commands are enabled, MBurstSingleReq can only beincluded when datahandshake isset to 1. If the only
enabled burst address sequence is UNKN, MBurstSingleReq cannot be included or tied off to a non-default value.

MDatal ast and MDataRowL ast can be included only if the datahandshake parameter isset to 1.
MDataRowL ast can only be included if MDatal ast is included.

MRegRowL ast can only beincluded if MRegLast is included.

SRespRowL ast can only beincluded if SRespLast isincluded.

MDataTaglD isincluded if tags isgreater than 1 and the datahandshake parameter isset to 1.
MTagInOrder can only beincluded if tags isgreater than 1.

STaglnOrder can only beincluded if tags is greater than 1.

MThreadBusy has awidth equal to threads. It may be included for single-threaded OCP interfaces.

SDataThreadBusy has awidth equal to threads. It may beincluded for single-threaded OCP interfaces and may only be
included if datahandshake isl.

SThreadBusy has awidth equa to threads. It may beincluded for single-threaded OCP interfaces.
ControlBusy can only be included if both Control and ControlWr exist.
ControlWr can only beincluded if Control exists.

25 The default tie-off values for M Connect, SConnect and SWait are the only allowed tie-off values.

26
27

StatusBusy can only be included if Status exists.
StatusRd can only be included if Status exists.

OCP-IP Confidential

Signals and Encoding 35

28 TRST_N canonly beincluded if jtag_enableissetto 1.

3.4.1 Signal Directions

OCP-IP Confidential

Figure 4 on page 36 summarizes all OCP signals. The direction of some
signals (for example, MCmd) depends on whether the module acts as a master
or slave, while the direction of other signals (for example, Control) depends on
whether the module acts as a system or a core. The combination of these two
choices provides four possible module configurations as shown in Table 17.

Table 17 Module Configuration Based on Signal Directions

ActsasCore Actsas System
Actsas OCP Master Master System master
Actsas OCP Slave Slave System slave

For example, if a module acts as OCP master and also as system, it is
designated a system master. In addition to the notion of modules, it is useful
to introduce an “interface” type. All modules have interfaces. Also, there is a
“monitor” interface type which observes all OCP signals. The permitted
connectivity between interface types is shown in Table 18.

Table 18 Intferface Types

Type Connects To Cannot Connect To

Master System slave, Slave, Monitor Master, System master

Slave Systemn master, Master, Monitor | Slave, System slave

System master Slave, Monitor Master, System Master, System
slave

System slave Master, Monitor Slave, System slave, System
master

Monitor Master, System master, Slave, | Monitor

System slave

The Clk, EnableClk, and ConnectCap signals are special in that they are

supplied by a third (external) entity that is neither of the two modules
connected through the OCP interface.

36 Open Core Protocol Specification

OCP-IP Confidential

Figure 4

Master

System

OCP Signal Summary
P clk _
p Enable ¢
b MAddr ¢
MAddrSpace ¢
MAtomicLength -
MBlockHeight ¢
MBlockStride ¢
MBurstLength -
MBurstPrecise :
MBurstSeq ¢
MBurstSingleReq -
MByteEn 4
MCmd ¢
MConniD -
MReg|Info :
MRegLast :
MReqRowLast ¢
MTagID ¢
MTagInOrder :
MThreadID ¢
P SCmdAccept d
<
P SData
p SDatalnfo
: SResp
Pl SResplnfo
Pl SRespLast
: SRespRowLast
P STagID
Pl STagInOrder
D SThreadID
h MRespAccept -
>
MDataByteEn -
MData -
MDatalnfo :
MDataLast :
MDataRowLast -
MDataTagID ¢
MDataThreadID 4
MDataValid -
P SDataAccept d
- MThreadBusy N
P SDataThreadBusy v
Pl SThreadBusy
<
MReset_n N
MError -
MFlag 4
P SError 4
Pl SFlag
: Sinterrupt
: SReset_n
h MConnect -
P SConnect 4
D SWait
: ConnectCap -
< >
Control N
ControlWr -
. ControlBusy i
Pl Status
h StatusRd N
. StatusBusy i
<
Scanctrl o
Scanin :
P Scanout g
- CIkByp N
TestClk ¢
TCK -
DI -
P TDO 4
h ™S N
TRST_N -
>

Slave

Request

Response

Data
Handshake

Data Flow

Sideband

Test

4

Protocol Semantics

OCP-IP Confidential

This chapter defines the semantics of the OCP protocol by assigning meanings
to the signal encodings described in the preceding chapter. Figure 5 provides
a graphic view of the hierarchy of elements that compose the OCP.

Figure 5 Hierarchy of Elements

Transaction

/NN

Transfer Transfer ... Transfer

2N

Phase Phase ... Phase

/N

Group Timing information

7T\

Signal Signal =+« Signal

38 Open Core Protocol Specification

4.1 Signal Groups

Some OCP fields are grouped together because they must be active at the
same time. The data flow signals are divided into three signal groups: request
signals, response signals, and datahandshake signals. A list of the signals
that belong to each group is shown in Table 19.

Table 19 OCP Signal Groups

Group Signal Condition

Request MAdar always
MAddrSpace always
MAtomicLength always
MBlockHeight always
MBIlockStride always
MBurstLength always
MBurstPrecise always
MBurstSeq always

MBurstSingleReq always

MByteEn always
MCmd always
MConnID always
MData’ datahandshake = 0
MDatalnfo” datahandshake =0
MReqInfo always
MReqLast always
MRegRowLast always
MTaglD always
MTagInOrder always
MThreadID always

OCP-IP Confidential

Protocol Semantics 39

Group Signal Condition
Response SData always
SDatalnfo always
SResp always
SRespInfo always
SResplLast always
SRespRowLast always
STaglD always
STagIinOrder always
SThreadID always
Datahandshake MData” datahandshake = 1
MDataByteEn always
MDatalinfo™ datahandshake = 1
MDatalLast always
MDataRowlast always
MDataTaglD always
MDataThreadID always
MDataVvalid always

* MData and MDatalnfo belong to the request group, unless the
datahandshake configuration parameter is enabled. In that case they belong
to the datahandshake group.

4.2 Combinational Dependencies

OCP-IP Confidential

It is legal for some signal or signal group outputs to be derived from inputs
without an intervening latch point, that is, combinationally. To avoid
combinational loops, other outputs cannot be derived in this manner.
Figure 6 describes a partial order of combinational dependency. For any
arrow shown, the signal or signal group can be derived combinationally from
the signal at the point of origin of the arrow or another signal earlier in the
dependency chain. No other combinational dependencies are allowed.

MThreadBusy, SDataThreadBusy, and SThreadBusy each appear twice in
Figure 6. The two appearances of each signal are mutually exclusive based
upon the setting of the mthreadbusy_pipelined,
sdatathreadbusy_pipelined, and sthreadbusy_pipelined parameters.
Refer to Section 4.3.2.4 on page 44 for more information about these
parameters.

40 Open Core Protocol Specification

Figure 6 Legal Combinational Dependencies Between Signals and Signal Groups

SThreadBusy
SDataThreadBusy
sthreadbusy_pipelined " *
0
L)
SThreadBusy SCmdAccept ' ¢
SDataThreadBusy Response group SDataAccept K
[
\‘ Iy K]
Isthreadbusy_pipelined \ ' "
\‘ l
Imthreadbusy_pipelined '0 , 'sthreadbusy pipelined &&
!sthreadbusy_pipelineij,' \‘ \‘ o mthreadbusy_pipelined
4
Master MThreadBusy ‘. Request group MRespAccept
[}
o/ \ ;
Y 4 ‘
Datahandshake MThreadBusy
group mthreadbusy_pipelined

Combinational paths are not allowed within the sideband and test signals, or
between those signals and the data flow signals. The only legal combinational
dependencies are within the data flow signals. Data flow signals, however,
may be combinationally derived from MReset_n and SReset_n.

For timing purposes, some of the allowed combinational paths are designated
as preferred paths and are described in Table 65 on page 317.

4.3 Signal Timing and Protocol Phases

This section specifies when a signal can or must be valid.

4.3.1 OCP Clock

The rising edge of the OCP clock signal is used to sample other OCP signals
to advance the state of the interface. When the EnableClk signal is not
present, the OCP clock is simply the Clk signal. When the EnableClk signal is
present (enableclk is 1), only rising edges of Clk that sample EnableClk
asserted are considered rising edges of the OCP clock. Therefore, when
EnableClk is 0, rising edges of Clk are not rising edges of the OCP clock and
OCP state is not advanced.

This restriction applies to all signals in the OCP interface. In particular, the
requirements for reset assertion (described on page 46) are measured in OCP
clock cycles.

OCP-IP Confidential

Protocol Semantics 41

4.3.2 Dataflow Signals

OCP-IP Confidential

Signals in a signal group must all be valid at the same time.

e The request group is valid whenever a command other than Idle is
presented on the MCmd field.

e The response group is valid whenever a response other than Null is
presented on the SResp field.

e The datahandshake group is valid whenever a 1 is presented on the
MDataValid field.

The accept signal associated with a signal group is valid only when that group
is valid.

e The SCmdAccept signal is valid whenever a command other than Idle is
presented on the MCmd field.

e The MRespAccept signal is valid whenever a response other than Null is
presented on the SResp field.

e The SDataAccept signal is valid whenever a 1 is presented on the
MDataValid field.

The signal groups map on a one-to-one basis to protocol phases. All signals
in the group must be held steady from the beginning of a protocol phase until
the end of that phase. Outside of a protocol phase, all signals in the
corresponding group (except for the signal that defines the beginning of the
phase) are “don’t care.”

In addition, the MData and MDatalnfo fields are a “don’t care” during read-
type requests, and the SData and SDatalnfo fields are a “don’t care” for
responses to write-type requests. Non-enabled data bytes in MData and bits
in MDatalnfo as well as non-enabled bytes in SData and bits in SDatalnfo are
a “don’t care.” The MDataByteEn field is “don’t care” during read-type
transfers. If MDataByteEn is present, the MByteEn field is “don’t care” during
write-type transfers. MTaglID is a “don’t care” if MTagInOrder is asserted and
MDataTagID is a “don’t care” for the corresponding datahandshake phase.
Similarly, STagID is a “don’t care” if STagInOrder is asserted.

e A request phase begins whenever the request group becomes active. It
ends when the SCmdAccept signal is sampled by the rising edge of the
OCP clock as 1 during a request phase.

e Aresponse phase begins whenever the response group becomes active. It
ends when the MRespAccept signal is sampled by the rising edge of the
OCP clock as 1 during a response phase.

If MRespAccept is not configured into the OCP interface (respaccept = 0)
then MRespAccept is assumed to be on; that is the response phase is
exactly one cycle long.

e A datahandshake phase begins whenever the datahandshake signal
group becomes active. It ends when the SDataAccept signal is sampled by
the rising edge of the OCP clock as 1 during a datahandshake phase.

42 Open Core Protocol Specification

For all phases, it is legal to assert the corresponding accept signal in the cycle
that the phase begins, allowing the phase to complete in a single cycle.

4.3.2.1 Phases in a Transfer

An OCP transfer consists of several phases, as shown in Table 20. Every
transfer has a request phase. Read-type requests always have a response
phase. For write-type requests, the OCP can be configured with or without
responses or datahandshake. Without a response, a write-type request
completes upon completion of the request phase (posted write model).

Table 20 Phases in each Transfer for MBurstSingleReq set to 0

MCmd Phases Condition

Read, ReadEx, Request, response always

ReadLinked

Write, Broadcast Request datahandshake =0

writeresp_enable =0

Write, Broadcast Request, response datahandshake =0
writeresp_enable = 1

WriteNonPost, Request, response datahandshake = 0
WriteConditional

Write, Broadcast Request, datahandshake datahandshake = 1
writeresp_enable =0

Write, Broadcast Request, datahandshake, response | datahandshake = 1
writeresp_enable =1

WriteNonPost, Request, datahandshake, response | datahandshake = 1
WriteConditional

Single request, multiple data (SRMD) bursts, described in Section 4.6.5 on
page 55, have a single request phase and multiple data transfer phases, as
shown in Table 21.

Table 21 Phases in a Transaction for MBurstSingleReq set to 1

MCmd Phases Condition

Read Request, H«L" response always

Write, Broadcast Request, H+LT datahandshake datahandshake = 1

writeresp_enable =0

Write, Broadcast Request H*LT datahandshake, response datahandshake = 1
writeresp_enable = 1

WriteNonPost Request, H«LT datahandshake, response | dafahandshake = 1

* Hrefers to the burst height (MBlockHeight), and is 1 for all burst sequences other than BLCK.
t+ L refers to the burst length (MBurstLength).

OCP-IP Confidential

Protocol Semantics 43

4.3.2.2 Phase Ordering Within a Transfer

The OCP is causal: within each transfer a request phase must precede the
associated datahandshake phase which in turn, must precede the associated
response phase. The specific constraints are:

4.3.2.3

OCP-IP Confidential

A datahandshake phase cannot begin before the associated request phase
begins, but can begin in the same OCP clock cycle.

A datahandshake phase cannot end before the associated request phase
ends, but can end in the same OCP clock cycle.

A response phase cannot begin before the associated request phase
begins, but can begin in the same OCP clock cycle.

A response phase cannot end before the associated request phase ends,
but can end in the same OCP clock cycle.

If there is a datahandshake phase and a response phase, the response
phase cannot begin before the associated datahandshake phase (or last
datahandshake phase for single request, multiple data bursts) begins, but
can begin in the same OCP clock cycle.

If there is a datahandshake phase and a response phase, the response
phase cannot end before the associated datahandshake phase (or last
datahandshake phase for single request, multiple data bursts) ends, but
can end in the same OCP clock cycle.

Phase Ordering Between Transfers

If tags are not in use, the ordering of transfers is determined by the ordering
of their request phases. Also, the following rules apply.

Since two phases of the same type belonging to different transfers both
use the same signal wires, the phase of a subsequent transfer cannot
begin before the phase of the previous transfer has ended. If the first
phase ends in cycle x, the second phase can begin in cycle x+1.

The ordering of datahandshake phases must follow the order set by the
request phases including multiple datahandshake phases for single
request, multiple data (SRMD) bursts.

The ordering of response phases must follow the order set by the request
phases including multiple response phases for SRMD bursts.

For SRMD bursts, a request or response phase is shared between multiple
transfers. Each individual transfer must obey the ordering rules described
in Section 4.3.2.2, even when a phase is shared with another transfer.

Where no phase ordering is specified, by the previous rules, the effect of
two transfers that are addressing the same location (as specified by
MAddr, MAddrSpace, and MByteEn [or MDataByteEn, if applicable]) must
be the same as if the two transfers were executed in the same order but
without any phase overlap. This ensures that read/write hazards yield
predictable results.

44 Open Core Protocol Specification

4.3.2.4

For example, on an OCP interface with datahandshake enabled, a read
following a write to the same location cannot start its response phase until
the write has started its datahandshake phase, otherwise the latest write
data cannot be returned for the read.

If tags are in use, the preceding rules are partially relaxed. Refer to
Section 4.7.1 on page 57 for a more detailed explanation.

Ungrouped Signals

Signals not covered in the description of signal groups and phases are
MThreadBusy, SDataThreadBusy, and SThreadBusy. Without further
protocol restriction, the cycle timing of the transition of each bit that makes
up each of these three fields is not specified relative to the other dataflow
signals. This means that there is no specific time for an OCP master or slave
to drive these signals, nor a specific time for the signals to have the desired
flow-control effect. Without further restriction, MThreadBusy, SDataTh-
readBusy, and SThreadBusy can only be treated as a hint.

For stricter semantics use the protocol configuration parameters
mthreadbusy_exact, sdatathreadbusy_ exact, and sthreadbusy_exact.
These parameters can be set to 1 only when the corresponding signal has
been enabled.

The parameters mthreadbusy_pipelined, sdatathreadbusy_pipelined,
and sthreadbusy_pipelined can be used to set the relative protocol timing
of the MThreadBusy, SDataThreadBusy, and SThreadBusy signals with
respect to their phases. The *_pipelined parameters! can only be enabled
when the corresponding *_exact parameter is enabled.

The *_exact parameters define strict protocol semantics for the
corresponding phase. The receiver of the phase identifies (through the
corresponding ThreadBusy signals) to the sender of the phase which threads
can accept an asserted phase. The sender will not assert a phase on a busy
thread, and the receiver accepts any phases asserted on threads that are not
busy. To avoid ambiguity, the corresponding phase Accept signal may not be
present on the interface, and is considered tied off to 1. The resulting phase
has exact flow control and is non-blocking. See Section 4.9.1.5 on page 61 for
configuration restrictions associated with ThreadBusy-related parameters.

The *_pipelined parameters control the cycle relationship between the
ThreadBusy signal and the corresponding phase assertion. When the
*_pipelined parameter is disabled (the default), the ThreadBusy signal
defines the flow control for the current cycle, so phase assertion depends
upon that cycle’s ThreadBusy values. This mode corresponds to the timing
arcs in Figure 6 where the ThreadBusy generation appears at the beginning
of the OCP cycle. When a *_pipelined parameter is enabled, the ThreadBusy
signal defines the flow control for the next cycle enabling fully sequential
interface behavior, where non-blocking flow control can be accomplished
without combinational paths crossing the interface twice in a single cycle.

1 The notation *_pipelined means the set of all parameter names ending in _pipelined.

OCP-IP Confidential

Protocol Semantics 45

Combinational paths may still be present to enable the phase receiver to
consider interface activity in the current cycle before signaling the
ThreadBusy signal that affects the next cycle. This corresponds to the timing
arcs in Figure 6 where ThreadBusy appears at the end of the OCP cycle. When
a _pipelined parameter is enabled, exact flow control is not possible for the
first cycle after reset is de-asserted, since the associated ThreadBusy would
have to be provided while reset was asserted. When sthreadbusy_pipelined
is enabled the master may not assert the request phase in the first cycle after
reset.

The effect of these parameters is as follows:

OCP-IP Confidential

If mthreadbusy_exact is enabled, mthreadbusy_pipelined is disabled,
and the master cannot accept a response on a thread, it must set the
MThreadBusy bit for that thread to 1 in that cycle. The slave must not
present a response on a thread when the corresponding MThreadBusy bit
is set to 1. Any response presented by the slave on a thread that is not
busy is accepted by the master in that cycle.

If mthreadbusy_exact and mthreadbusy_pipelined are enabled and
the master cannot accept a response on a thread in the next cycle, it must
set the MThreadBusy bit for that thread to 1 in the current cycle. If an
MThreadBusy bit was set to 1 in the prior cycle, the slave cannot present
a response on a thread in the current cycle. Any response presented by
the slave on a thread that was not busy in the prior cycle is accepted by
the master in that cycle.

If sdatathreadbusy_exact is enabled, sdatathreadbusy_piplelined
is disabled, and the slave cannot accept a datahandshake phase on a
thread, the slave must set the SDataThreadBusy bit for that thread to 1
in that cycle. The master must not present a datahandshake phase on a
thread when the corresponding SDataThreadBusy bit is set to 1. Any
datahandshake phase presented by the master on a thread that is not
busy is accepted by the slave in that cycle.

If sdatathreadbusy_ exact and sdatathreadbusy piplelined are
enabled and the slave cannot accept a datahandshake phase on a thread
in the next cycle, the slave must set the SDataThreadBusy bit for that
thread to 1 in the current cycle. If an SDataThreadBusy bit was set to 1
in the prior cycle, the master cannot present a datahandshake on the
corresponding thread in the current cycle. Any datahandshake presented
by the master on a thread that was not busy in the prior cycle is accepted
by the slave in that cycle.

If sthreadbusy_exact is enabled, sthreadbusy_piplelined is
disabled, and the slave cannot accept a command on a thread, the slave
must set the SThreadBusy bit for that thread to 1 in that cycle. The
master must not present a request on a thread when the corresponding
SThreadBusy bit is set to 1. Any request presented by the master on a
thread that is not busy is accepted by the slave in that cycle.

If sthreadbusy_exact and sthreadbusy_piplelined are enabled and

the slave cannot accept a request on a thread in the next cycle, the slave
must set the SThreadBusy bit for that thread to 1 in the current cycle. If
an SThreadBusy bit was set to 1 in the prior cycle, the master cannot

46 Open Core Protocol Specification

present a request on the corresponding thread in the current cycle. Any
request presented by the master on a thread that was not busy in the prior
cycle is accepted by the slave in that cycle.

4.3.3 Sideband and Test Signals

4.3.3.1

4.3.3.2

OCP-IP Confidential

Reset

The OCP interface provides an interface reset signal for each master and
slave. At least one of these signals must be present. If both signals are
present, the composite reset state of the interface is derived as the logical AND
of the two signals (that is, the interface is in reset as long as one of the two
resets is asserted).

Treat OCP reset signals as fully synchronous to the OCP clock, where the
receiver samples the incoming reset using the rising edge of the clock and
deassertion of the reset meets the receiver’s timing requirements with respect
to the clock. An exception to this rule exists when the assertion edge of an
OCP reset signal is asynchronous to the OCP clock. This behavior handles the
practice of forcing all reset signals to be combinationally asserted for power-
on reset or other hardware reset conditions without waiting for a clock edge.

Once a reset signal is sampled asserted by the rising edge of the OCP clock,
all incomplete transactions, transfers and phases are terminated and both
master and slave must transition to a state where there are no pending OCP
requests or responses. When a reset signal is asserted asynchronously, there
may be ambiguity about transactions that completed, or were aborted due to
timing differences between the arrival of the OCP reset and the OCP clock.

For systems requiring precision use synchronous reset assertion, or only
apply reset asynchronously if the interface is either quiescent or hung.
MReset_n and SReset_n must be asserted for at least 16 cycles of the OCP
clock to ensure that the master and slave reach a consistent internal state.
When one or both of the reset signals are asserted in a given cycle, all other
OCP signals must be ignored in that cycle. The master and slave must each
be able to reach their reset state regardless of the values presented on the
OCP signals. If the master or slave require more than 16 cycles of reset
assertion, the requirement must be documented in the IP core specifications.

At the clock edge that all reset signals present are sampled deasserted, all
OCP interface signals must be valid. In particular, it is legal for the master to
begin its first request phase in the same clock cycle that reset is deasserted.

Connection Signals

The OCP interface offers an optional connection protocol that enables the
master to control the connection state of the interface based upon the input
of both master and slave, which can be used to implement robust schemes for
power management. The protocol makes a clear difference between an OCP
disconnected state resulting solely from a slave vote (M_DISC state) versus
one resulting from a master vote independently from the slave side vote

Protocol Semantics 47

(M_OFF state). It has a single connected state (M_CON) and a transient state
(M_WAIT) that allows the slave to control how quickly the master may
transition from one stable state to another.

The connection protocol is implemented using fully synchronous signals
sampled by the rising edge of the OCP clock and no combinational paths are
allowed between the connection signals. Since any transitions between the
stable connection states requires that the interface be quiescent, the interface
reset is not needed explicitly by the connection protocol and connection state
transitions may occur independently from the reset state of the interface.
Neither data flow nor sideband communication (other than the connection
signals) is allowed in a disconnected state. However, the connection signals
(MConnect, SConnect and SWait) are always valid to enable proper operation
of the connection protocol. Since sideband communication is only reliable in
the connected state (M_CON), the 16 cycle reset assertion requirement can
only be reliably met in the connected state.

MConnect[1:0] provides the OCP socket connection state and is driven by the
master. The master must ensure a minimum duration of 2 cycles in a stable
state (M_CON, M_OFF or M_DISC) to permit the slave to sample a new stable
state and then assert SWait (to S_WAIT) to influence the next potential
connection state transition. This is a side effect of the timing requirements of
the connection protocol. MConnect[1:0] does not convey the master’s vote on
the OCP connection state. This vote information is not explicitly visible at the
interface. The four valid connection states follow.

e The M_OFF state is a stable state where the interface is disconnected due
to the master’s vote, independently from any concurrent vote from the
slave. It is likely required that the interface reach the M_OFF state before
performing specific power reduction techniques such as powering down
the master.

e The M_DISC state is a stable state where the interface is disconnected
resulting solely from the slave’s vote on SConnect. Since the master is
voting for connection, but prevented by the slave, the master may
implement an alternate behavior for upstream traffic intended for the
disconnected slave. This alternate behavior is out of the scope of the
connection protocol, but may be addressed in a future
extension.Transitions to M_DISC are only allowed after the master has
sampled the slave’s vote to disconnect (SConnect is S_DISC).

e The M_CON state is a stable state where the interface is fully connected.
It is the only state in which the master is allowed to begin any
transactions, and the master may not leave M_CON unless all
transactions are complete. Transitions to M_CON are only allowed after
the master has sampled the slave’s vote for a connection (SConnect is
S_CON). The master may not present the first transaction on the interface
until the cycle after transitioning to M_CON.

e The M_WAIT state is a transient state where the master is indicating to
the slave that it is in the process of changing the connection state. The
master can change between stable connection states without entering
M_WAIT only if the SWait signal is negated. M_WAIT is disconnected for
dataflow communication but sideband communication is allowed in

OCP-IP Confidential

48 Open Core Protocol Specification

4.3.3.3

4.3.3.4

OCP-IP Confidential

M_WAIT only if the prior state was M_CON. The master and slave must
cooperate to ensure that all sideband communication is complete before
exiting M_WAIT for a disconnected state.

SConnect provides the slave’s vote on the OCP connection state. The slave
may change its vote at any time, but must be ready to support the connected
state (M_CON) when driving SConnect to S_CON.

SWait allows the slave to control how the master transitions between the
stable connection states. By asserting SWait (S_WAIT) in a stable state, the
slave forces the master to transition through the M_WAIT state and the
master may not leave M_WAIT until it has sampled SWait negated (S_OK). The
slave must assert SWait in situations where the master could otherwise
transition from M_CON to a disconnected state without allowing the slave to
become quiescent. SWait can be tied-off to logic O (S_OK) in case the slave can
accept immediate transitions by the master between the stable connection
states.

Interrupt, Error, and Core Flags

There is no specific timing associated with SInterrupt, SError, MFlag, MError,
and SFlag. The timing of these signals is core-specific.

Status and Control

The following rules assure that control and status information can be
exchanged across the OCP without any combinational paths from inputs to
outputs and at the pace of a slow core.

e Control must be held steady for a full cycle after the cycle in which it has
transitioned, which means it cannot transition more frequently than every
other cycle. If ControlBusy was sampled active at the end of the previous
cycle, Control can not transition in the current cycle. In addition, Control
must be held steady for the first two cycles after reset is deasserted.

e If Control transitions in a cycle, ControlWr (if present) must be driven
active for that cycle. ControlWr following the rules for Control, cannot be
asserted in two consecutive cycles.

e ControlBusy allows a core to force the system to hold Control steady.
ControlBusy may only start to be asserted immediately after reset, or in
the cycle after ControlWr is asserted, but can be left asserted for any
number of cycles.

e While StatusBusy is active, Status is a “don’t care”. StatusBusy enables a
core to prevent the system from reading the current status information.
While StatusBusy is active the core may not read Status. StatusBusy can
be asserted at any time and be left asserted for any number of cycles.

e StatusRd is active for a single cycle every time the status register is read
by the system. If StatusRd was asserted in the previous cycle, it must not
be asserted in the current cycle, so it cannot transition more frequently
than every other cycle.

Protocol Semantics 49

4.3.3.5 Test Signals

Scanin and Scanout are “don’t care” while Scanctrl is inactive (but the
encoding of inactive for Scanctrl is core-specific).

TestCIk is “don’t care” while C1kByp is O.

The timing of TRST_N, TCK, TMS, TDI, and TDO is specified in the IEEE 1149
standard.

4.4 Transfer Effects

A successful transfer is one that completes without error. For write-type
requests without responses, there is no in-band error indication. For all other
requests, a non-ERR response (that is, a DVA or FAIL response) indicates a
successful transfer. The FAIL response is legal only for WriteConditional
commands!. This section defines the effect that a successful transfer has on
a slave. The request acts on the addressed location, where the term address
refers to the combination of MAddr, MAddrSpace, and MByteEn (or
MDataByteEn, if applicable). Two addresses are said to match if they are
identical in all components. Two addresses are said to conflict, if the mutual
exclusion (lock or monitor) logic is built to alias the two addresses into the
same mutual exclusion unit. The transfer effects of each command are:

Idle
None.

Read
Returns the latest value of the addressed location on the SData field.

ReadEx
Returns the latest value of the addressed location on the SData field. Sets
a lock for the initiating thread on that location. The next request on the
thread that issued a ReadEx must be a Write or WriteNonPost to the
matching address. Requests from other threads to a conflicting address
that is locked are not committed until the lock is released. If the ReadEx
request returns an ERR response, it is slave-specific whether the lock is
actually set or not. Refer to Section 4.4.3 on page 51 for details.

ReadLinked
Returns the latest value of the addressed location on the SData field. Sets
a reservation in a monitor for the corresponding thread on at least that
location. Requests of any type from any thread to a conflicting address
that is reserved are not blocked from proceeding, but may clear the
reservation.

Write/WriteNonPost
Places the value on the MData field in the addressed location. Unlocks
access to the matched address if locked by a ReadEx issued on the same
initiating thread.Clears the reservations on any conflicting addresses set
by other threads.

! For all commands except those following a posted write model, a DVA response also indicates
that the transfer is committed.

OCP-IP Confidential

50 Open Core Protocol Specification

4.4.1

OCP-IP Confidential

WriteConditional
If a reservation is set for the matching address and for the corresponding
thread, the write is performed as it would be for a Write or WriteNonPost.
Simultaneously, the reservation is cleared for all threads on any
conflicting address. If no reservation is set for the corresponding thread,
the write is not performed, a FAIL response is returned, and no
reservations are cleared.

Broadcast
Places the value on the MData field in the addressed location that may
map to more than one slave in a system-dependent way. Broadcast clears
the reservations on any conflicting addresses set by other threads.

If a transfer is unsuccessful, the effect of the transfer is unspecified. Higher-
level protocols must determine what happened and handle any clean-up.

The synchronization commands ReadEx / Write, ReadEx / WriteNonPost,
and ReadLinked / WriteConditional have special restrictions with regard to
data width conversion and partial words. In systems where these commands
are sent through a bridge or interconnect that performs wide-to-narrow data
width conversion between two OCP interfaces, the initiator must issue only
commands within the subset of partial words that can be expressed as a
single word of the narrow OCP interface. For maximum portability, single-
byte synchronization operations are recommended.

Partial Word Transfers

An OCP interface may be configured to include partial word transfers by using
either the MByteEn field, or the MDataByteEn field, or both.

e If neither field is present, then only whole word transfers are possible.

e If only MByteEn is present, then the partial word is specified by this field
for both read type transfers and write type transfers as part of the request
phase.

e If only MDataByteEn is present, then the partial word is specified by this
field for write type transfers as part of the datahandshake phase, and
partial word reads are not supported.

e If both MByteEn and MDataByteEn are present, then MByteEn specifies
partial words for read transfers as part of the request phase, and
MDataByteEn specifies partial words for write transfers as part of the
datahandshake phase.

It is legal to use a request with all byte enables deasserted. Such requests
must follow all the protocol rules, except that they are treated as no-ops by
the slave: the response phase signals SData and SDatalnfo are “don’t care”
for read-type commands, and nothing is written for write-type commands.

Protocol Semantics 51

4.4.2 Posting Semantics

Table 22 below summarizes the posting semantics for write-type commands.
WRNP and WRC are always non-posted; a DVA response indicates that the
write was committed and an ERR response indicates that the write was not
committed (an error occurred along the write path).

WR and BCST commands may follow a posted or non-posted model. If the
OCP interface is configured to not send a completion response
(writeresp_enable is set to 0), the write is posted upon command
acceptance and is considered to be posted early. When writeresp_enable is
set to 1, the system designer decide where along the write path the posting
point is. The completion response (either DVA or ERR) is then generated from
the posting point. The non-posted model has the same semantics as WRNP.

Table 22 Write Posting Semantics

writeresp_enable

Write Command

0 1
WR, BCST Posted early Posted or Non-posted
WRNP, WRC Non-posted Non-posted

4.4.3 Transaction Completion, Transaction Commitment

4.5

OCP-IP Confidential

It is useful to distinguish between “commitment” of a transaction and the
“completion” of a transaction. A transaction is “committed” when the
transaction finishes or completes at the final target.

In cases where the completion response is sent by the slave or target after
commitment, the completion response is a guarantee of transaction
commitment. With a posted write model, however, the posted write
completion response may be received at the master before the write
commitment.

Thus, the OCP completion response implies commitment for all transactions
except writes with a posted write model (e.g., WR or BCST with early posting).
For posted writes, there is no relationship between commitment and
completion.

Endianness

An OCP interface by itself is inherently endian-neutral. Data widths must
match between master and slave, addressing is on an OCP word granularity,
and byte enables are tied to byte lanes (data bits) without tying the byte lanes
to specific byte addresses.

The issue of endianness arises in the context of multiple OCP interfaces,
where the data widths of the initiator of a request and the final target of that
request do not match. Examples are a bridge or a more general interconnect
used to connect OCP-based cores.

52 Open Core Protocol Specification

4.6

OCP-IP Confidential

When the OCP interfaces differ in data width, the interconnect must associate
an endianness with each transfer. It does so by associating byte lanes and
byte enables of the wider OCP with least-significant word address bits of the
narrower OCP. Packing rules, described in Section 4.6.1.2 on page 54 must
also be obeyed for bursts.

OCP interfaces can be designated as little, big, both, or neutral with respect
to endianness. This is specified using the protocol parameter endian
described in Section 4.9.1.6 on page 62. A core that is designated as both
typically represents a device that can change endianness based upon either
an internal configuration register or an external input. A core that is
designated as neutral typically represents a device that has no inherent
endianness. This indicates that either the association of an endianness is
arbitrary (as with a memory, which traditionally has no inherent endianness)
or that the device only works with full-word quantities (when byteen and
mdatabyteen are set to 0).

When all cores have the same endianness, an interconnect should match the
endianness of the attached cores. The details of any conversion between cores
of different endianness is implementation-specific.

Burst Definition

A burstis a set of transfers that are linked together into a transaction having
a defined address sequence and number of transfers. There are three general
categories of bursts:

Imprecise bursts
Request information is given for each transfer. Length information may
change during the burst.

Precise bursts
Request information is given for each transfer, but length information is
constant throughout the burst.

Single request / multiple data bursts (also known as packets)
Also a precise burst, but request information is given only once for the
entire burst.

To express bursts on the OCP interface, at least the address sequence and
length of the burst must be communicated, either directly using the
MBurstSeq and MBurstLength signals, or indirectly through an explicit
constant tie-off as described in Section 4.9.5.1 on page 66.

A single (non-burst) request on an OCP interface with burst support is
encoded as a request with any legal burst address sequence and a burst
length of 1.

The ReadEx, ReadLinked, and WriteConditional commands can not be used
as part of a burst. The unlocking Write or WriteNonPost command associated
with a ReadEx command also can not be used as part of a burst.

Protocol Semantics 53

4.6.1 Burst Address Sequences

OCP-IP Confidential

The relationship of the MBurstSeq encodings and corresponding address
sequences are shown in Table 23. The table also indicates whether a burst
sequence type is packing or not, a concept discussed on page 54.

Table 23 Burst Address Sequences

Mnemonic | Name Address Sequence Packing
BLCK 2D block see below for definition yes
DFLT1 custom (packed) user-specified yes
DFLT2 custom (not packed) | user-specified no
INCR incrementing incremented by OCP word size |yes

each transfer”

STRM streaming constant each transfer no

UNKN unknown none specified implementation
specific

WRAP wrapping like INCR, except wrap at yes

address boundary aligned with
MBurstLength * OCP word size

XOR exclusive OR see below for definition yes

* Bursts must no wrap around the OCP address size.

The address sequence for two-dimensional block bursts is as follows. The
address sequence begins at the provided address and proceeds through a set
of MBlockHeight subsequences, each of which follows the normal INCR
address sequence for MBurstLength transfers. The starting address for each
following subsequence is the starting address of the prior subsequence plus
MBlockStride.

The address sequence for exclusive OR bursts is as follows. Let BASE be the
lowest byte address in the burst, which must be aligned with the total burst
size. Let FIRST_OFFSET be the byte offset (from BASE) of the first transfer in
the burst. Let CURRENT _COUNT be the count of the current transfer in the
burst, starting at 0. Let WORD_SHIFT be the logarithm base-two of the OCP
word size in bytes. Then the current address of the transfer is BASE |
(FIRST_OFFSET ~ (CURRENT_COUNT << WORD_SHIFT)).

The burst address sequence UNKN is used if the address sequence is not
statically known for the burst. Single request/multiple data bursts (described
on page 55) with a burst address sequence of UNKN are illegal. In contrast,
the DFLT1 and DFLT2 address sequences are known, but are core or system
specific.

The burst address sequences BLCK, WRAP, and XOR can only be used for
precise bursts. Additionally, the burst sequences WRAP and XOR can only
have a power-of-two burst length and a data width that is a power-of-two
number of bytes.

54 Open Core Protocol Specification

4.6.1.1

4.6.1.2

4.6.2

OCP-IP Confidential

Not all masters and slaves need to support all burst sequences. A separate
protocol parameter described in Section 4.9.1.2 on page 59 is provided for
each burst sequence to indicate support for that burst sequence.

Byte Enable Restrictions

Burst address sequences STRM and DFLT2 must have at least one byte
enable asserted for each transfer in the burst. Bursts with the STRM address
sequence must have the same byte enable pattern for each transfer in the
burst.

Packing

Packing allows the system to make use of the burst attributes to improve the
overall data transfer efficiency in the face of multiple OCP interfaces of
different data widths. For example, if a bridge is translating a narrow OCP to
a wide OCP, it can aggregate (or pack) the incoming narrow transfers into a
smaller number of outgoing wide transfers. Burst address sequences are
classified as either packing or not packing.

For burst address sequences that are packing, the conversion between
different OCP data widths is achieved through aggregation or splitting.
Narrow OCP words are collected together to form a wide OCP word. A wide
OCP word is split into several narrow OCP words. The byte-specific portion of
MDatalnfo and SDatalnfo is aggregated or split with the data. The transfer-
specific portion of MDatalnfo and SDatalnfo is unaffected. The packing and
unpacking order depends on endianness as described on page 51.

For burst address sequences that are not packing, conversion between
different OCP data widths is achieved using padding and stripping. A narrow
OCP word is padded to form a wide OCP word with only the relevant byte
enables turned on. A wide OCP word is stripped to form a narrow OCP word.
The byte-specific portion of MDatalnfo and SDatalnfo is zero-padded or
stripped with the data. The transfer-specific portion of MDatalnfo and
SDatalnfo is unaffected. Width conversion can be performed reliably only if
the wide OCP interface has byte enables associated with it. For wide to narrow
conversion the byte enables are restricted to a subset that can be expressed
within a single word of the narrow OCP interface.

Since the address sequence of DFLT1 is user-specified, the behavior of DFLT1
bursts through data width conversion is implementation-specific.

Burst Length, Precise and Imprecise Bursts
The MBurstLength field indicates the number of transfers in the burst.

Precise bursts (MBurstPrecise set to 1)
MBurstLength must be held constant throughout the burst, so the exact
burst length can be obtained from the first transfer. A precise burst is
completed by the transfer of the correct number of OCP words. Precise
bursts are recommended over imprecise bursts because they allow for
increased hardware optimization.

Protocol Semantics 55

Imprecise bursts (MBurstPrecise set to 0)
MBurstLength can change throughout the burst and indicates the current
best guess of the number of transfers left in the burst (including the
current one). An imprecise burst is completed by an MBurstLength of 1.

4.6.3 Constant Fields in Bursts

MCmd, MAddrSpace, MConnID, MBurstPrecise, MBurstSingleReq,
MBurstSeq, MAtomicLength, MBlockHeight, MBlockStride, and MReqglnfo
must all be held steady by the master for every transfer in a burst, regardless
of whether the burst is precise or imprecise. If possible, slaves should hold
SResplnfo steady for every transfer in a burst.

4.6.4 Atomicity

When interleaving requests from different initiators on the way to or at the
target, the master uses MAtomicLength to indicate the number of OCP words
within a burst that must be kept together as an atomic quantity. If MAtomi-
cLength is greater than the actual length of the burst, the atomicity
requirement ends with the end of the burst. Specifying atomicity
requirements explicitly is especially useful when multiple OCP interfaces are
involved that have different data widths.

For master cores, it is best to make the atomic size as small as required and,
if possible, to keep the groups of atomic words address-aligned with the group
size.

4.6.5 Single Request / Multiple Data Bursts (Packets)

MBurstSingleReq specifies whether a burst can be communicated using a
single request / multiple data protocol. When MBurstSingleReq is O, each
request has a single data word associated with it. When MBurstSingleReq is
1, each request may have multiple data words associated with it, according to
the values of MBurstLength and MBlockHeight. MBurstSingleReq may be set
to 1 only if MBurstPrecise is set to 1. In addition, if any write-type commands
are enabled, datahandshake must be set to 1.

When MBurstSingleReq is set to 1, write type transfers have MBurstLength *
height datahandshake phases per request!; while read-type transfers have
MBurstLength * height response phases per request as shown in Table 21 on
page 42. The height is MBlockHeight for BLCK address sequences, and 1 for
all others.

For write type transfers when MBurstSingleReq is set to 1 and the
MDataByteEn field is present, that field in each data transfer phase specifies
the partial word pattern for the phase. When MBurstSingleReq is set to 1 and
the MDataByteEn field is not present, the MByteEn pattern of the request
phase applies to all data transfer phases.

1 Additionally, there is a single response phase for WRNP write type while the WR and BCST types
have this phase only if writeresp_enable is set to 1. Note that WRC write type is not allowed
in a burst.

OCP-IP Confidential

56 Open Core Protocol Specification

4.6.6

4.6.7

OCP-IP Confidential

For read type transfers when MBurstSingleReq is set to 1, the MByteEn field
specifies the byte enable pattern that is applied to all data transfers in the
burst.

MReqlast, MDatalLast, SRespLast

Optional signals MReqLast, MDataLast, and SRespLast provide redundant
information that indicates the last request, datahandshake, and response
phase in a burst, respectively. These signals are provided as a convenience to
the recipient of the signal. To avoid separate counting mechanisms to track
bursts, cores that have the information available internally are encouraged to
provide it at the OCP interface.

MReqLast is O for all request phases in a burst except the last one. MReqLast
is 1 for the last request phase in a burst, for single request / multiple data
bursts, and for single requests.

MDatalLast is O for all datahandshake phases in a burst except the last one.
MDatalLast is 1 for the last datahandshake phase in a burst and for the only
datahandshake phase of a single request.

SRespLast is O for all response phases in a burst except the last one.
SRespLast is 1 for the last response phase in a burst, for the response to a
write-type single request / multiple data burst, and for the response to a
single request.

MReqgRowLast, MDataRowLast, SRespRowLast

For the BLCK burst address sequence, the optional signals MReqRowLast,
MDataRowLast, and SRespRowLast identify the last request, datahandshake,
and response phase in a row. The last phase in a burst is always considered
the last phase in a row, and BLCK burst sequences reach the end of a row
every MBurstLength phases (at the end of each INCR sub-sequence, see page
68). To avoid separate counting mechanisms needed to track BLCK burst
sequences, cores that have the end of row information available should
provide it at the OCP interface.

For all request phases in a non-BLCK burst except the last one, MReqRowLast
is 0. MReqRowLast is O for every request phase in a BLCK burst sequence that
is not an integer multiple of MBurstLength. MReqRowLast is 1 for:

e The last request phase in a burst including;:
— The only request phase in a single request/multiple data burst
— The only request phase in a single word request

e Every request phase in a BLCK burst sequence that is an integer multiple
of MBurstLength

For all datahandshake phases in a non-BLCK burst except the last one,
MDataRowLast is 0. MDataRowLast is O for every datahandshake phase in a
BLCK burst sequence that is not an integer multiple of MBurstLength.
MDataRowLast is 1 for:

Protocol Semantics 57

4.7

4.7.1

OCP-IP Confidential

e The last datahandshake phase in a burst including the only
datahandshake phase of a single word request

¢ Every datahandshake phase in a BLCK burst sequence that is an integer
multiple of MBurstLength

For all response phases in a non-BLCK burst except the last one,
SRespRowLast is 0. SRespRowLast is O for every response phase in a BLCK
burst sequence that is not an integer multiple of MBurstLength.
SRespRowLast is 1 for:

¢ The last response phase in a burst including:

— The only response phase in a write-type single request/multiple data
burst

— The only response phase in a single word request

e Every response phase in a BLCK burst sequence that is an integer
multiple of MBurstLength

Tags

Tags allow out-of-order return of responses and out-of-order commit of write
data.

A master drives a tag on MTagID during the request phase. The value of the
tag is determined by the master and may or may not convey meaning beyond
ordering to the slave. For write transactions with data handshake enabled,
the master repeats the same tag on MDataTagID during the datahandshake
phase. For read transactions and writes with responses the slave returns the
tag of the corresponding request on STagID while supplying the response. The
same tag must be used for an entire transaction.

Ordering Restrictions

The sequence of requests by the master determines the initial ordering of
tagged transactions. For tagged write transactions with datahandshake
enabled, the datahandshake phase must observe the same order as the
request phase. The master cannot interleave requests or datahandshake
phases from different tags belonging to the same thread within a transaction.

Tag values can be re-used for multiple outstanding transactions. Slaves are
responsible for committing write data and sending responses for multiple
transactions that have the same tag, in order.

Responses that are part of the same transaction must stay together, up to the
tag_interleave_size (see Section 4.9.1.7 on page 62). Beyond the
tag_interleave_size, responses with different tags can be interleaved. This
allows for blocks of responses corresponding to tag_interleave_size from
one burst to be interleaved with blocks of responses from other bursts.

58 Open Core Protocol Specification

4.8

OCP-IP Confidential

Responses with different tags can be returned in any order for all commands
that have responses. Responses with the same tag must remain in order with
respect to one another. Responses to requests that are issued with
MTagInOrder asserted are also never reordered with respect to one another.
The value returned on STagInOrder with the slave’s response must match the
value provided on MTagInOrder with the master’s request.

Commitment of transactions with overlapping addresses (as determined by
MAddrSpace, MAddr, MByteEn [or MDataByteEn, if applicable]) on different
(or the same) tags within a thread is always in order. Note, however, that the
completion responses for such transactions with different tag ids may be
reordered.

Threads and Connections

When using multiple threads, it is possible to support concurrent activity,
and out-of-order completion of transfers. All transfers within a given thread
must either remain strictly ordered or follow the tag ordering rules, but there
are no ordering rules for transfers that are in different threads. Mapping of
individual requests and responses to threads is handled through the
MThreadID and SThreadID fields respectively. If datahandshake has been
enabled when multiple threads are present, there must also be an MDataTh-
readID field to annotate the datahandshake phase. If datahandshake is set to
1 and the datahandshake phase has blocking flow control (as described on
page 61), the order of datahandshake phases must follow the order of request
phases across all threads. If the datahandshake phase has no flow control or
non-blocking flow control, the request order and datahandshake order are
independent across threads.

The use of thread IDs allows two entities that are communicating over an OCP
interface to assign transfers to particular threads. If one of the communi-
cating entities is itself a bridge to another OCP interface, the information
about which transfers are part of which thread must be maintained by the
bridge, but the actual assignment of thread IDs is done on a per-OCP-
interface basis. There is no way for a slave on the far side of a bridge to extract
the original thread ID unless the slave design comprehends the character-
istics of the bridge.

Use connections whenever source thread information about a request must
be sent end-to-end from master to slave. Any bridges in the path between the
end-to-end partners preserve the connection ID, even as thread IDs are re-
assigned on each OCP interface in the path. The MConnlID field transfers the
connection ID during the request phase. Since this establishes the mapping
onto a thread ID, the other phases do not require a connection ID but are
unambiguous with only a thread ID.

The SThreadBusy, SDataThreadbusy, and MThreadBusy signals are used to
indicate that a particular thread is busy. The protocol parameters
sthreadbusy_exact, sdatathreadbusy_exact, and mthreadbusy_exact
can be used to force precise semantics for these signals and assure that a
multi-threaded OCP interface never blocks. For more information, see
Section 4.3.2.4 on page 44.

Protocol Semantics 59

4.9 OCP Configuration

4.9.1

4.9.1.1

4.9.1.2

OCP-IP Confidential

This section describes configuration options that control interface
capabilities.

Protocol Options

Optional Commands

Not all devices support all commands. Each command in Table 24 has an
enabling parameter to indicate if that command is supported.

Table 24 Command Enabling Parameters
Command Parameter

Broadcast broadcast_enable
Read read_enable

ReadEx readex_enable
ReadLinked and rdlwrc_enable
WriteConditional

Write write_enable
WriteNonPost writenonpost_enable

The following conditions apply to command support:

e A master with one of these options set to O must not generate the
corresponding command.

e Aslave with one of these options set to O cannot service the corresponding
command.

e At least one of the command enables must be set to 1.

e If any read-type command is enabled, or if WRNP is enabled, or if
writeresp_enable is set to 1, resp must be set to 1.

e If readex_enableis setto 1, write_enable or writenonpost_enable
must be set to 1.

Optional Burst Sequences

Not all masters and slaves need to support all burst address sequences. Table
25 lists the parameter for each burst sequence. A master with the parameter
set to 1 may generate the corresponding burst sequence. A slave with the
parameter set to 1 can service the corresponding burst sequence. If
MBurstSeq is disabled and tied off to a constant value, the corresponding
burst sequence parameter must be enabled and all others disabled. If
MBurstSeq is enabled at least one of the burst sequence parameters must be
enabled.

60 Open Core Protocol Specification

4.9.1.3

49.1.4

OCP-IP Confidential

Table 25 Burst Sequence Parameters

Burst Sequence Parameter

BLCK burstseqg_blck_enable
DFLT1 burstseq_dflt1_enable
DFLT2 burstseq_dflt2_enable
INCR burstseq_incr_enable
STRM burstseq_strm_enable
UNKN burstseq_unkn_enable
WRAP burstseq_wrap_enable
XOR burstseg_xor_enable

The BLCK burst sequence can only be enabled if both MBlockHeight and
MBlockStride are included in the interface or tied off to non-default values.
For additional burst information, see Section 4.6 on page 52.

Byte Enable Patterns

Not all devices support all allowable byte enable patterns. A force_aligned
parameter limits byte enable patterns on MByteEn and MDataByteEn to be
power-of-two in size and aligned to that size. The byte enable pattern of all Os
is explicitly included in the legal force aligned patterns.

¢ A master with this option set to 1 must not generate any byte enable
patterns that are not force aligned.

e A slave with this option set to 1 cannot handle any byte enable patterns
that are not force aligned.

force_aligned can be set to 1 only if data_wdth is set to a power-of-two
value.

Burst Alignment

The burst_aligned parameter provides information about the length and
alignment of INCR bursts issued by a master and can be used to optimize the
system. Setting burst_aligned to 1 requires all INCR bursts to:

e Have an exact power-of-two number of transfers
¢ Have their starting address aligned with their total burst size
e Be issued as precise bursts.

The burst_aligned parameter does not apply to the INCR subsequences
within BLCK burst sequences.

Protocol Semantics 61

4.9.1.5 Flow Control Options

OCP-IP Confidential

To permit the SThreadBusy and MThreadBusy signals to guarantee a non-
blocking, multi-threaded OCP interface, the sthreadbusy_exact and
mthreadbusy_exact parameters require strict semantics. See

Section 4.3.2.4 on page 44 for a definition of these parameters. Table 26
describes the legal combinations of phase handshake signals.

Table 26 Request Phase Without Datahandshake

cmdaccept | sthreadbusy |sthreadbusy exact |Explanation

0 0 0 Legal: no flow control

0 0 1 lllegal: sthreadbusy_exact must be
0 when sthreadbusy is 0

0 1 0 lllegal: no real flow control

0 1 1 Legal: non-blocking flow control

1 0 0 Legal: blocking flow control

1 0 1 lllegal: sthreadbusy_exact must be
0 when sthreadbusy is 0

1 1 0 Legal: blocking flow control with
hints

1 1 1 lllegal: since SCmdAccept is
present flow control cannot be
exact

When datahandshake is set to 1, the preceding rules for cmdaccept,
sthreadbusy, and sthreadbusy_exact also apply to dataaccept, sdatath-
readbusy, and sdatathreadbusy_exact. In addition, blocking and non-
blocking flow control must not be mixed for the request and datahandshake
phase. A phase using no flow control can be mixed with phases using either
blocking or non-blocking type flow control. The legal combinations are shown
in Table 27.

Table 27 Request Phase with Datahandshake
Datahandshake Phase Flow Control
None Blocking Non-blocking
Request Phase None Legal Legal Legal
Flow Control
Blocking LegO|2 Legal lllegal
Non-blocking | Legal lllegal LegO|3

1 Only legadl if reqdata_together isset to 0.

2 Only legal if reqdata_together is set to 0. In addition the master must not assert the datahandshake phase until after
the associated request phase has been accepted.

8 Only legal if sthreadbusy pipelined and sdatathreadbusy _pipelined are both set to the same value.

The preceding rules for the request phase using cmdaccept, sthreadbusy,
and sthreadbusy_exact also apply to the response phase for respaccept,
mthreadbusy, and mthreadbusy_exact.

62 Open Core Protocol Specification

4.9.1.6

4.9.1.7

OCP-IP Confidential

Endianness

The endian parameter specifies the endianness of a core. The behavior of
each endianness choice is summarized in Table 28.

Table 28 Endianness

Endianness Description

little core is litfle-endian

big core is big-endian

both core can be either big or little endian, depending on its static or

dynamic configuration (e.g. CPUs)

neutral core has no inherent endianness (e.g. memories, cores that deal
only in OCP words)

As far as OCP is concerned, little endian means that lower addresses are
associated with lower numbered data bits (byte lanes), while big endian
means that higher addresses are associated with lower numbered data bits
(byte lanes). This becomes significant when packing is concerned (see
Section 4.6.1.2 on page 54). In addition, for non-power-of-2 data widths, tie-
off padding is always added at the most significant end of the OCP word. See
Section 4.5 on page 51 for additional information.

Burst Interleaving with Tags

When tags > 1, the tag_interleave_size parameter limits the interleaving
permitted for responses with burst sequences. The parameter indicates the

size of a power-of-two, aligned data block (in OCP words) within which there
can be no interleaving of responses from packing bursts with different tags.

tag_interleave_size =0
No interleaving of responses between any burst sequence responses with
different tags is permitted.

tag_interleave_size =1
Interleaving is permitted at OCP word granularity and is unrestricted.

tag_interleave_size > 1
Interleaving of non-packing burst sequence responses is not limited by
tag_interleave_size. Interleaving of packing burst responses is
allowed whenever the next response would cross the data block boundary,
regardless of whether a full data block of responses has been returned.

Restricting interleaving opportunities for packing burst responses reduces
the storage required for width conversion when multiple tags are present. For
slaves, enabling the parameter restricts the aligned boundary within which
the slave interleaves responses with different tags. For masters, the
parameter gives the minimum aligned boundary at which the master can
tolerate interleaving of responses with different tags.

Protocol Semantics 63

4.9.2 Phase Options

OCP-IP Confidential

The datahandshake parameter allows write data to have a handshake
interface separate from the request group.

Datahandshake

If datahandshake is set to 1, the MDataValid and optionally the SDataAccept
signals are added to the OCP interface, a separate datahandshake phase is
added, and the MData and MDatalnfo fields are moved from the request group
to the datahandshake group. Datahandshake can be set to 1 only if at least
one write-type command is enabled.

Request and Data Together

While datahandshake is required for OCP interfaces that are capable of
communicating single request / multiple data bursts, a fully separated
datahandshake may be overkill for some cores. The parameter
regdata_together is used to specify that the request and datahandshake
phases of the first transfer in a single request, multiple data (SRMD) write-
type burst begin and end together.

A master with reqdata_together set to 1 must present the request and first
write data word in the same cycle and can expect that the slave will accept
them together. If sthreadbusy_exact and sdatathreadbusy_exact are both set
to 1 and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set
to O, then a request and first write data can be presented only when both
SThreadBusy and SDataThreadBusy for the corresponding thread are O on
that cycle. If sthreadbusy_exact and sdatathreadbusy_exact are both set to 1
and sthreadbusy_pipelined and sdatathreadbusy_pipelined are both set to 1,
then a request and first write data can be presented only on cycle i when both
SThreadBusy and SDataThreadBusy for the corresponding thread are O
during the prior cycle, i.e., cycle (i-1).

A slave with reqdata_together set to 1 must accept the request and first write
data word in the same cycle and can expect that they will be presented
together.

The parameter reqdata_together can only be set to 1 if burstsinglereq is
set to 1, or burstsinglereq is set to O and MBurstSingleReq is tied off to 1.

If both regdata_together and burstsinglereq are set to 1, the master
must present the request and associated write data word together for each
transfer in any multiple request / multiple data writes it issues. The slave
must accept both request and write data together for all such transfers.

Write Responses

e Writes which follow a non-posted model, i.e., WRNP and WRC, always
have a write response. For this case, resp must be set to 1.

e For writes which follow a posted model, i.e., WR and BCST: if responses
are not enabled on writes (writeresp_enable set to 0), then they
complete on command acceptance.

64 Open Core Protocol Specification

4.9.3

49.4

4.9.5

OCP-IP Confidential

Signal Options

The configuration parameters described in Section 3.4 on page 31, not only
configure the corresponding signal into the OCP interface, but also enable the
function. For example, if the burstseq and burstlength parameters are
enabled the MBurstSeq and MBurstLength fields are added and the interface
also supports burst extensions as described in Section 4.6 on page 52.

Minimum Implementation

A minimal OCP implementation must support at least the basic OCP dataflow
signals. OCP-interoperable masters and slaves must support the command
type Idle and at least one other command type.

If the SResp field is present in the OCP interface, OCP-interoperable masters
and slaves must support response types NULL and DVA. The ERR response
type is optional and should only be included if the OCP-interoperable slave
has the ability to report errors. All OCP masters must be able to accept the
ERR response. If rdlwrc_enable is set to 1, the FAIL response type must be
supported by OCP masters and slaves.

OCP Interface Interoperability

Two devices connected together each have their own OCP configuration. The
two interfaces are only interoperable (allowing the two devices to be connected
together and communicate using the OCP protocol semantics) if they are
interoperable at the core, protocol, phase, and signal levels.

1. At the core level:
e One interface must act as master and the other as slave.

e If system signals are present, one interface must act as core and the
other as system.

2. At the protocol level, the following conditions determine interface
interoperability:

e If the slave has read_enable set to O, the master must have
read_enable set to O, or it must not issue Read commands.

e If the slave has readex_enable set to 0, the master must have
readex_enable set to O, or it must not issue ReadEx commands.

e If the slave has rdlwrc_enable set to 0, the master must have
rdlwrc_enable set to O, or it must not issue either ReadLinked or
WriteConditional commands.

e If the slave has write_enable set to 0, the master must have
write_enable set to O, or it must not issue Write commands.

e Ifthe slave has writenonpost_enable set to O, the master must have
writenonpost_enable set to O, or it must not issue WriteNonPost
commands.

Protocol Semantics 65

OCP-IP Confidential

If the slave has broadcast_enable set to O, the master must have
broadcast_enable set to O, or it must not issue Broadcast
commands.

If the slave has burstseq blck_enable set to 0, the master must
have burstseqg blck_enable set to O, or it must not issue BLCK
bursts.

If the slave has burstseq_incr_enable set to 0, the master must
have burstseq_incr_enable set to O, or it must not issue INCR
bursts.

If the slave has burstseq_strm_enable set to 0, the master must
have burstseq_strm_enable set to 0, or it must not issue STRM
bursts.

If the slave has burstseq dfltl_enable set to O, the master must
have burstseq dfltl_enable set to 0, or it must not issue DFLT1
bursts.

If the slave has burstseq dflt2_enable set to O, the master must
have burstseq_dflt2_enable set to O, or it must not issue DFLT2
bursts.

If the slave has burstseq wrap_enable set to 0, the master must
have burstseq wrap_enable set to O, or it must not issue WRAP
bursts.

If the slave has burstseq_xor_enable set to O, the master must have
burstseq xor_enable set to O, or it must not issue XOR bursts.

If the slave has burstseq _unkn_enable set to 0, the master must
have burstseq _unkn_enable set to O, or it must not issue UNKN
bursts.

If the slave has force_aligned, the master has force_aligned or it
must limit itself to aligned byte enable patterns.

Configuration of the mdatabyteen parameter is identical between
master and slave.

If the slave has burst_aligned, the master has burst_aligned or it
must limit itself to issue all INCR bursts using burst_aligned rules.

If the interface includes SThreadBusy, the sthreadbusy_exact and
sthreadbusy_pipelined parameters are identical between master
and slave.

If the interface includes MThreadBusy, the mthreadbusy_exact and
mthreadbusy_pipelined parameter are identical between master
and slave.

If the interface includes SDataThreadBusy, the
sdatathreadbusy_exact and sdatathreadbusy_pipelined
parameters are identical between master and slave.

66 Open Core Protocol Specification

All combinations of the endian parameter between master and slave
are interoperable as far as the OCP interface is concerned. There may
be core-specific issues if the endianness is mismatched.

If tags > 1, the master’s tag_interleave_size is smaller than or
equal to the slave’s tag_interleave_size.

3. At the phase level the two interfaces are interoperable if:

Configuration of the datahandshake parameter is identical between
master and slave.

Configuration of the writeresp_enable parameter is identical
between master and slave. Otherwise, the master only issues the write
commands WriteNonPost and WriteConditional.

Configuration of the regdata_together parameter is identical
between master and slave.

4. At the signal level, two interfaces are interoperable if:

data_wdth is identical for master and slave, or if one or both
data_wdth configurations are not a power-of-two, if that data_wdth
rounded up to the next power-of-two is identical for master and slave.

The master and slave both have mreset or sreset set to 1.
If the master has mreset set to 1, the slave has mreset set to 1.
If the slave has sreset set to 1, the master has sreset set to 1.

The value of connection is identical for master and slave, or if
ConnectCap is tied off to logic O on the side with connection set to 1.

Both master and slave have tags set to >1 or if only one core’s tags
parameter is set to 1, the other core behaves as though MTagInOrder
were asserted for every request.

The tie-off rules, described in the next section are observed for any
mismatch at the signal level for fields other than MData and SData.

4.9.5.1 Signal Mismatch Tie-off Rules

There are two types of signal mismatches: both interfaces may have
configured the signal, but to different widths or only one interface may have
configured the signal.

OCP-IP Confidential

Width mismatch for all fields other than MData and SData is handled through
a set of signal tie-off rules. The rules state whether a master and slave that
are mismatched in a particular field width configuration are interoperable,
and if so how to connect them by tying off the mismatched signals.

If there is a width mismatch between master and slave for a particular signal
configuration the following rules apply:

Protocol Semantics 67

4.9.6

OCP-IP Confidential

e If there are more outputs than inputs (the driver of the field has a wider
configuration than the receiver of the field) the low-order output bits are
connected to the input bits, and the high-order output bits are lost. The
interfaces are interoperable if the sender of the field explicitly limits itself
to encodings that only make use of the bits that are within the
configuration of the receiver of the field.

e If there are more inputs than outputs (the driver of field has a narrower
configuration than the receiver of the field) the low-order input bits are
connected to the output bits, and the high-order input bits are tied to
logical 0. The interfaces are always interoperable, but only a portion of the
legal encodings are used on that field.

If one of the cores has a signal configured and the other does not, the following
rules apply:

e If the core that would be the driver of the field does not have the field
configured, the input is tied off to the constant specified in the driving
core’s configuration, or if no constant tie-off is specified, to the default tie-
off constant (see Table 16 on page 31). The interfaces are interoperable if
the encodings supported by the receiver’s configuration of the field
include the tie-off constant.

e If the core that would be the receiver of the field does not have the field
configured, the output is lost. The receiver of the signal must behave as
though in every phase it were receiving the tie-off constant specified in its
configuration, or lacking a constant tie-off, the default tie-off constant (see
Table 16 on page 31). The interfaces are interoperable if the driver of the
signal can limit itself to only driving the tie-off constant of the receiver.

e If only one core has the EnableClk signal configured, the interfaces are
interoperable only when the EnableClk signal is asserted, matching the
tie-off value of the core that has enableclk=0.

If neither core has a signal configured, the interfaces are interoperable if both
cores have the same tie-off constant, where the tie-off constant is either
explicitly specified, or if no constant tie-off is specified explicitly, is the default
tie-off (see Table 16 on page 31).

While the tie-off rules allow two mismatched cores to be connected, this may
not be enough to guarantee meaningful communication, especially when
core-specific encodings are used for signals such as MReqInfo.

As the previous rules suggest, specifying core specific tie-off constants that
are different than the default tie-offs for a signal (see Table 16 on page 31)
makes it less likely that the core will be interoperable with other cores.

Configuration Parameter Defaults

To assure OCP interface interoperability between a master and a slave
requires complete knowledge of the OCP interface configuration of both
master and slave. This is achieved by a combination of (a) requiring some
parameters to be explicitly specified for each core, and (b) defining defaults
that are used when a parameter is not explicitly specified for a core.

68 Open Core Protocol Specification

Table 29 lists all configuration parameters. For parameters that do not need
to be specified, a default value is listed, which is used whenever an explicit
parameter value is not specified. Certain parameters are always required in
certain configurations, and for these no default is specified.

Table 29 Configuration Parameter Defaults

Type Parameter Default

Protocol broadcast_enable

burst_aligned

burstseq_dflt1_enable

0
0
burstseq_blck_enable 0
0
0

burstseq_dflt2_enable

burstseq_incr_enable 1

burstseqg_strm_enable 0
burstseq_unkn_enable 0
burstseq_wrap_enable 0
burstseqg_xor_enable 0
endian little
force_aligned 0
mthreadbusy_exact 0
rdiwrc_enable 0

read_enable 1

readex_enable

0
sdatathreadbusy_exact 0
0

sthreadbusy_exact

tag_interleave_size 1

write_enable 1

writenonpost_enable

Phase datahandshake

reqdata_together

writeresp_enable

OCP-IP Confidential

Protocol Semantics 69

OCP-IP Confidential

Type Parameter Default
Signal addr 1
(Dataflow) - ey
addr_wdth No default - must be explicitly specified if
addris setto 1
addrspace 0

addrspace_wdth

No default - must be explicitly specified if
addrspace is set to 1

atomiclength

0

atomiclength_wdth

No default - must be explicitly specified if
atomiclength is sef to 1

blockheight

0

blockheight_wdth

No default - must be explicitly specified if
blockheight is setf to 1

blockstride

0

blockstride_wdth

No default - must be explicitly specified if
blockstride is set to 1

burstlength

0

burstlength_wdth

No default - must be explicitly specified if
burstlength is set to 1

burstprecise 0
burstseq 0
burstsinglereq 0
byteen 0
cmdaccept 1
connid 0

connid_wdth

No default - must be explicitly specified if
connid is setto 1

dataaccept 0
datalast 0
datrowalast 0
data_wdth No default - must be explicitly specified if
mdata or sdata is set o 1
enableclk 0
mdata 1
mdatabyteen 0
mdatainfo 0

Type Parameter Default
Signall mdatainfo_wdth No default - must be explicitly specified if
(Dataflow) mdatainfo is set to 1

mdatainfobyte_wdth

mthreadbusy 0
mthreadbusy_pipelined 0
reqinfo 0

reqginfo_wdth

No default - must be explicitly specified if
reqinfo is set to 1

reglast 0
regrowlast 0
resp 1
respaccept 0
respinfo 0

respinfo_wdth

No default - must be explicitly specified if
respinfo is set fo 1

resplast 0
resprowlast 0
sdata 1
sdatainfo 0

sdatainfo_wdth

sdatfainfobyte_wdth

No default - must be explicitly specified if
sdatainfo is set to 1

sdatathreadbusy

sdatathreadbusy_pipelined

sthreadbusy

sthreadbusy_pipelined

0
0
0
0

tags

taginorder

threads

Protocol Semantics 71

Type Parameter Default
Signall connection 0
(Sideband) control 0
controlbusy 0
control_wdth No default—must be explicitly specified if
controlis set to 1
conftrolwr 0
interrupt 0
merror 0
mflag 0
mflag_wdth No default—must be explicitly specified if
mflag is set to 1
mreset No default—must be explicitly specified
serror 0
sflag 0
sflag_wdth No default - must be explicitly specified if
sflagis set fo 1
sreset No default - must be explicitly specified
status 0
statusbusy 0
statusrd 0
status_wdth No default - must be explicitly specified if
status is set to 1
Signal clkctrl_enable 0
(Test) jfag_enable 0
jtagtrst_enable 0
scanctrl_wdth 0
scanport 0
scanport_wdth No default - must be explicitly specified if
scanport is set to 1

OCP-IP Confidential

72 Open Core Protocol Specification

OCP-IP Confidential

5 OCP Coherence Extensions:
Theory of Operafion

OCP-IP Confidential

There is an increasing need for SoC architectures to be built with masters
which have caches. When shared memory locations are cached, there is a
need for cache coherence.

The OCP Coherence Extensions are a parameterizable set of commands and
signals that enable a SoC designer to build a wide variety of cache coherent
architectures. The main features of the extensions are:

OCP 3.0 with coherence extensions maintains full backward compatibility
with OCP 2.2, making it possible to mix OCP 2.2 masters and slaves (that
are by definition non-coherent) with coherent masters and slaves.

Ability to build a wide range of cache-coherent architectures, from fully
snoop-based to fully directory-based. Example architectures are
presented in Chapter 13, beginning on page 255.

The extensions support protocols based on MSI (and SI), MESI, and
MOESI cache state combinations. Further, it is not necessary that all
agents in a coherence domain enable the same set of cache states. Thus,
a directory agent, for example, could be based on MSI while each of the
other caching agents could be based on MSI or MESI.

Includes support for coherence-aware masters.

The extensions only support invalidation based protocols because of their
preponderance over update based protocols. Within the gamut of
invalidation based protocols, the extensions permit the use of either
three-hop protocols or four-hop protocols. The Coherence Extensions are
flexible, and permit protocol optimizations based on specific system
requirements.

74 Open Core Protocol Specification

e Multiple coherence domains may coexist in a single architecture.
However, only one cache line size is permitted in each coherence domain,
and a coherence domain cannot share its coherence address space with
any other coherence domain.

Note that an OCP coherent system permits the existence of “subsystem
coherence,” where a subsystem will maintain its own coherence framework
and can act as a single OCP coherent agent to the system at the next hierar-
chical level. In fact, the subsystem coherence framework at the lower level
could itself be composed of OCP agents. Hierarchical coherent subsystems
are built in this manner.

5.1 Cache Coherence

A generally accepted definition of cache coherence!, which is used in this
specification, requires the following two conditions to be satisfied:

e A write must eventually be made visible to all master entities. This is
accomplished in invalidate protocols by ensuring that a write is
considered complete only after all the cached copies other than the one
which is updated are invalidated.

e Writes to the same location must appear to be seen in the same order by
all masters. Two conditions which ensure this are:

e Writes to the same location by multiple masters are serialized, i.e., all
masters see such writes in the same order. This can be accomplished
by requiring that all invalidate operations for a location arise from a
single point in the coherent slave and that the interconnect preserves
the ordering of messages between two entities.

¢ Aread following a write to the same memory location is returned only
after the write has completed.

5.2 Local View vs. System View

OCP 2.x is a point-to-point interface with one end being the master and the
other end the slave. Thus all requests from the master agent are directed to
the slave agent and all responses from the slave agent are directed to the
master agent. Even when multiple agents are used in a system and a master
agent needs to communicate with multiple slaves, the master agent acts as
though it were communicating only with its slave (i.e., the slave agent in a
single master—single slave configuration). This abstraction is made possible
by a “bridge” or “interconnection” agent that acts as a slave agent for this
master (and other masters). It also acts as a single master when a slave agent
has to communicate with multiple masters in a system. Thus, the master and
the slave agents do not need to carry explicit identifiers. Each master or slave
agent maintains a “local” view even when it is part of a multi-agent system.

1 see, for example, S. Adveand K. Gharachorl oo, “ Shared Memory Consistency Models: A Tutorial,” |EEE Computer,
vol. 29, no. 12, pp. 66-76, December 1996.

OCP-IP Confidential

OCP Coherence Extensions: Theory of Operation 75

5.3

5.3.1

OCP-IP Confidential

Only the bridge or interconnect agent maintains a “system” view. This is a
very convenient abstraction in SoC architectures that are loosely coupled with
agents that are really hard or soft IPs.

With OCP 3.0 and the introduction of cache coherence, the “local” view is
maintained for all master agents and all non-coherent slave agents. Only the
home agent (introduced on page 79), which is a slave coherent agent, and the
bridge agent need to maintain the “system view” abstraction. In this context,
the “system view” refers to the explicit encoding of the master, slave, and
forwarding agent identifiers (IDs) and the encoding of the address regions on
an agent’s interface.

Coherent System Transactions

The notions of master, slave, and bridge entities are inherited from previous
versions of the Open Core Protocol Specification. The master entity initiates
requests and receives responses on its OCP port. The slave entity receives
requests and generates responses on its OCP port. The bridge entity, if
present, has one or more master and one or more slave ports.

In a coherent system, the slave may not be able to satisfy the response to a
request directly since the latest copy of the requested address may reside in
the coherent cache of another master and may not reside at its “home”
memory. The coherence mechanism ensures that the latest copy is returned
to the requester. It does this by “snooping” the set of coherent caches which
has the latest data for this address, possibly updating the cache states, and
finally returning the latest data to the original master. It can be inferred from
this short background that a more sophisticated description of master/slave
entities, ports, and address regions is needed for OCP to support cache
coherence. The relevant definitions follow. (The reader is referred to standard
text books and tutorials on cache coherence for a complete treatment.)

For convenience, the set of commands supported by OCP Rev. 2.2 are called
legacy commands. The new set of commands introduced for the coherence
extensions are called coherent commands.

Cache Line and Cache States

A cache line is the granularity of the data which participates in cache
coherence. The cache line is byte addressable, has a power-of-two data size,
and its address is always aligned to its line size. The current version of the
OCP specification requires that all entities in the coherence domain have the
same cache line size. It is expected that succeeding versions of the specifi-
cation will relax this requirement. The first refinement will allow a different
cache line size at each level of a hierarchical cache coherent system.
Subsequent refinements will permit multiple cache line sizes in a coherence
domain at the same level of the hierarchy. In such cases, the cache line sizes
will be power-of-two multiples of the base size.

76 Open Core Protocol Specification

5.3.2

OCP-IP Confidential

Note that if a master with coherent cache supports the critical word first
feature, addresses of commands from the master may not be aligned to
multiple of the cache line size, but the cache line boundaries should be
aligned to the multiple of the cache line size by using WRAP or XOR burst
address sequences.

A cache line in a master’s coherent cache is always in one of several known
states; the set of available states are summarized in Table 30. Some states
are required and some are optional depending on the type of coherence
protocol chosen.

Table 30 Cache Line State Definitions

Name Mnemonic | Description (0103 4
Compliance
Invalid I Cache line not present in caching | Required
entity.
Shared S Cache line is read only. Required
Modified |M Cache line owned exclusively by | Required!

caching entity and modified by it.
Memory copy is stale.

All other caching entities have this
line in I state.

Exclusive E Cache line is exclusively owned. |Optional
Memory copy matches value.

All other caching entities have this
line in I state.

Owned O This entity has latest copy. Optional
Memory copy is stale.

Other caching agents may have
(latest) copy.

1. Instruction caches typically do not require this state.

Three Hop and Four Hop Protocols

The coherence extensions permit the implementation of both four hop and
three hop protocols.

Four hop protocols are simpler to implement and are so called because the
transfer of a cache line to a requester takes up to four protocol steps:

1. master’s request to coherent slave;
2. slave’s probe of other masters (which have coherent caches);

3. responses from masters, with one of them possibly providing the latest
copy of the cache line to the slave; and,

4. the transfer of data from the slave to the requesting master.

OCP Coherence Extensions: Theory of Operation 77

5.4

5.5

OCP-IP Confidential

Three hop protocols have better latency characteristics, but are more
complicated to implement than four-hop protocols since they give rise to
additional race conditions, deadlock, and starvation scenarios. The transfer
of a modified cache line to a requester takes three protocol steps:

1. master’s request to coherent slave;
2. slave’s probe of other masters (which have coherent caches); and,

3. response from a master which has a cache line in the modified state
directly to the requester (and a possible writeback of this data to the slave)
with concurrent responses from all masters to the slave.

Address Space

The entire address space is partitioned into two non-overlapping parts: the
coherent address space and the non-coherent address space. Each space
is composed of regions which may be non-contiguous. The size of a region is
implementation specific.

The coherent address space is kept coherent by OCP-based cache coherence
protocols. Each access to this space is permitted only at cache line granularity
(with optional byte enables). A read operation into this space always results
in the latest completed write being read. A completed write to this space
always results in this value being visible to all masters. Section 6.2.3.2 gives
the semantics of the various types of reads and writes to this space. This
space is typically accessed by coherent and coherence-aware masters (both
cached and non-cached).

Coherent addresses are cacheable by coherent masters. If an address is
cached, then the cache is coherent, i.e., it participates in cache coherence
through the intervention port (see Section 5.5 on page 77). A coherence-aware
master does not require a cache.

The non-coherent address space is not kept coherent by the OCP-based cache
coherence protocol. Accesses to this space are at the OCP word granularity
(with optional byte enables). Reads and writes to this space follow the
semantics of legacy reads and writes.

Non-coherent addresses may be cached by a master. Such a cache does not
participate in cache coherence and is not kept coherent by OCP.

Entities and Poris

A master with a coherent cache issues read and write commands that have
different semantics from the read and write commands detailed in the Open
Core Protocol Specification, Release 2.2. For example, such a master might
issue a read with intent to modify the requested line (i.e., acquiring the latest
copy, writing to it, and retaining it in its cache), a read only request, and a
write back of a modified or dirty line when that line needs to be evicted from
the cache. A master with a coherent cache is called a coherent master and
issues requests on the main port of the OCP interface. The full set of main

78 Open Core Protocol Specification

OCP-IP Confidential

port commands and encodings are explained in Section 5.6. Legacy requests
which are targeted to non-coherent address space are issued on the main
port.

The coherent master also needs to satisfy requests from other coherent
masters to “snoop” its cache lines and possibly respond either with the latest
copy of the cache line or by giving up its ownership of the cache line. In OCP
3.0, these requests to the master and the corresponding responses are
handled via the intervention port. The full set of intervention port
commands are explained in Section 6.3.3.1 on page 115. A CPU is a typical
example of an entity which would be an OCP coherent master. Section 5.9
presents an abstract model that illustrates the interaction between the main
port and the intervention port, and between the coherent master and coherent
slave.

A coherence-aware master does not have a coherent cache. For example, a
DMA engine could be implemented as a coherence-aware master. A
coherence-aware master has a main port but does not have an intervention
port.

A coherence-aware master uses legacy commands. If the associated address
is in the coherent region, then the coherent slave performs the appropriate
actions depending on the request and the state of the associated cache line
(as seen by the home agent), e.g., a coherent read returns the latest value
written. (While processing a request from the coherence-aware master, a
coherent slave may send intervention requests for the latest write to be
returned, as discussed in detail in Section 13.3.4.1 on page 276.) If the
associated address for a request is in the non-coherent address space, then
the request has the semantics of a legacy request.

The coherent slave is the target of coherent request commands from all or
any master in the coherence domain, depending on the type of coherence
protocol used. It receives requests on its main port. Before it generates the
response, it in turn sends requests on the intervention port to snoop all or a
subset of the coherent caches in the coherence domain and may send a
request to the memory controller. After it receives the responses to the
intervention requests and/or from the memory controller, it finally sends the
response to the original request on its main port. The coherent slave also
ensures that writes to the same location appear to be seen in the same order
by all the coherence masters. The coherent slave implementation usually
takes the form of either a snoop- or directory-based scheme, as described in
Section 5.11.

OCP 3.0 maintains full backward compatibility with OCP 2.2, that is, the
command set for the coherence extensions is a superset of the OCP 2.2
command set. OCP 3.0 defines a new signal, MCohCmd, which, when set,
indicates a coherent command. Non-coherent commands, which refer to the
OCP 2.2 command set, do not have the MCohCmd bit set. In the rest of the
document, the port defined by OCP 2.2 is referred to as the legacy port. Note
that the main port defined by OCP 3.0 is capable of generating legacy
transactions. Hence, a new design would not need both the legacy and main
ports.

OCP Coherence Extensions: Theory of Operation 79

5.6

OCP-IP Confidential

A master with a legacy port that only generates transactions to non-coherent
space is called a legacy master. A slave with a legacy port is called a legacy
slave.

Other terms used in this document include:

e The term requester is interchangeably used for a coherent master which
initiates a request.

e The term responder is interchangeably used for a coherent master which
responds to an intervention request.

e The term owner is interchangeably used for a coherent master which has
a cache line in the M or the O state.

e The term snoop is interchangeably used with intervention.

e The term home agent is interchangeably used with coherent slave. Thus
each coherent address has an associated home which is the coherent
slave managing its coherency actions.

Commands

A master which can only issue legacy commands to noncoherent space is
called a legacy master. A master which can issue only legacy commands to
both coherent and noncoherent address spaces is called a coherence aware
master. A master which can issue legacy commands to both non-coherent
and coherent address spaces, and can issue coherent commands to coherent
address spaces is called a coherent master.

It is illegal for coherent commands to be issued to non-coherent address
spaces.

Legacy commands accessing the noncoherent address space are called
“Legacy Commands to Noncoherent Space” (LC-NC for short). Legacy
commands accessing the coherent address space are called “Legacy
Commands to Coherent Space” (LC-C for short).

Table 31 summarizes the allowed combination of OCP masters and command
types.

The LC-C semantics are different from LC-NC since they operate on a different
address space. The LC-C and the Coherent Commands are described in
Section 6.2.3.2 on page 99.

80 Open Core Protocol Specification

Table 31 Allowed Commands
Master Type Legacy Commands |Legacy Commands |Coherent
to Noncoherent to Coherent Space Commands (CC)
Space (LC-NC) (LC-C)
Legacy Yes No No
Coherence-Aware | Yes Yes No
Coherent Yes Yes Yes

Table 32 summarizes the scope of the address space access for each
command type.

Table 32 Address Space Access by Command Type

Command Type Address Space Access Scope

LC-NC Non-coherent address space at OCP word granularity. Bridge
agent handles multiple word sizes, packing, efc.

LC-C, CC Coherent address space at cache line granularity, aligned af
cache line size boundary. Single cache line size used within
entire coherence domain.

5.7 Self Intervention and Serialization

When a coherent slave receives a request R1 from a coherent master M1, the
slave is required to send an intervention request to M1 in addition to any other
intervention requests it needs to send as a result of request R1. Such a
request to M1 is called a self intervention. In case of conflicting requests by
multiple masters to the same cache line, the self intervention request is used
to establish the same order at the coherent master as the conflicting requests
seen at the coherent slave. Self intervention is a key mechanism to ensure
cache coherence and freedom from deadlock.

An intervention that is not a self intervention is called a system
intervention. The term intervention by itself is can be used to refer to either
self intervention or system intervention—with the distinction made clear by
the context; self-interventions are explicitly noted.

The coherent slave or home agent plays a significant role in ensuring that
conflicting write requests (i.e., write-write, read-write, or write-read access
sequence to the same cache line) are serialized. The serialization point is the
logic in the home that orders or serializes the conflicting requests. This
ordering is done in an implementation-specific manner. It is necessary that
the coherent masters that process these conflicting requests also see them in
the same order established by the home agent. To facilitate this, OCP requires
that the interconnect preserves the ordering of OCP transactions between a
given pair of entities (A and B) on a per-address basis: if two transactions T1
and T2 with the same address are launched from A to B, the interconnect will

OCP-IP Confidential

OCP Coherence Extensions: Theory of Operation 81

5.8

5.9

OCP-IP Confidential

deliver the transactions to B in the same order. These conditions, along with
the self intervention mechanism, ensure that all coherent masters see writes
to the same cache line in the order established at the home agent.

Thus, each coherent master has to implement logic to maintain the ordering
imposed by the home. The serialization point at the home is called the primary
serialization point and the one at each master is called the secondary serial-
ization point. Unless otherwise noted, the term serialization point refers to the
primary serialization point.

In a snoop based design, the home agent for all coherent requests is typically
the interconnect agent itself, which acts as the coherent slave. Thus, snoop
based designs have a single serialization point. In a directory based design,
the home agents for coherent addresses may be physically centralized or may
be distributed and are typically separate from the interconnect. Each physical
home agent becomes the serialization point for the set of coherent addresses
it controls.

Inferconnect or Bridge Agent

An OCP 3.0 cache coherent system requires at least two coherent masters. It
also requires at least one coherent slave. The slave in a directory based
implementation needs to be able to identify the coherent masters to know the
coherent cache state, send targeted intervention requests, etc. Hence, unlike
a legacy OCP system, the slave needs to be aware of all the coherent masters
in the coherence domain. Further, since there are at least three entities in the
coherent system, a bridge or interconnect agent is necessary in OCP 3.0. The
bridge has to preserve the transaction ordering property on a per-address
basis as mentioned in Section 5.7.

Note that the interconnection agent is still able to preserve the abstraction
that a master still communicates with a single slave and a legacy slave still
communicates with a single legacy master. Thus all these entities have a
“local” view as outlined in Section 5.2. The interconnect agent, in this case,
acts as a proxy for these entities by assigning appropriate IDs and providing
routing functionality. Thus, only coherent slaves which have directory based
implementations need to have the “system view” in addition to the
interconnect.

In snoopy based designs, the interconnect frequently provides additional
functionality by acting as the coherent slave. This is explained in
Section 5.11.2.

Port Characteristics

Table 33 captures the roles of different masters and slaves.

82 Open Core Protocol Specification

Table 33

Roles of Masters and Slaves

Core

Type

Legacy
Port

Main
Port

Inter-
vention
Port

Function

Legacy
Master

Yes

No

No

e Initiates requests to non-
coherent address space only

¢ Receives responses from
non-coherent address space
only

Coherence
-Aware
Master

No

Yes

No

e Initiates legacy and coherent
requests to coherent and
non-coherent spaces using
legacy commands

¢ Receives responses from
coherent and non-coherent
spaces

Coherent
Master

No

Yes

Yes

¢ Initiates requests to both
non-coherent and coherent
address spaces on main port
(including coherent
commands)

* Receives responses on main
port

* Receives intervention
requests

¢ Generates intervention
responses

Legacy
Slave

Yes

No

No

Receives legacy requests
Initiates legacy responses

Coherent
Slave
(Home
Agent)

Possiblel

Yes

Yes

* Receives requests on main
port

¢ Generates intervention
requests

* Receives intervention
responses

e Generates legacy port

requests1
¢ Receives legacy port

responses!
¢ Generates responses on
main port

1. These are requests to a non-coherent slave (typically the memory). This can be handled
through a legacy OCP port or through a custom interface.

Figures 7—9 capture the port connectivities and port directions for three
generic cases:

e Figure 7 for an OCP non-coherent (legacy) system

e Figure 8 for an OCP coherent system which is snoop based with the
interconnect acting as the coherent slave or home.

OCP-IP Confidential

OCP Coherence Extensions: Theory of Operation 83

e Figure 9 for an OCP coherent system with a centralized directory based
coherent slave.

Figure 7 Block Diagram of OCP Non-Coherent System

Legacy Master Legacy Master/Slave Legacy Slave

Core Core Core

Legacy
Response
Ports ocp Request
Bus wrapper -
interface Bus Initiator Bus Initiator/Target Bus Target
module |] |
On-Chip Bus

Figure 8 Block Diagram of Snoop-Based OCP Coherent System

Legacy Slave Coherence-Aware

Legacy Master Coherent Master

(Memory) Master
Core Core Core Core
Non-Coherent Master Non-Coherent Slave Coherent Master Coherence-Aware Master

Slave

. h 1“
NEHCEI e B Non-Coherent Target

Initiator

Coherent Cache Coherence-Aware
Initiator initiator

Serialization Point Request Signals
® Primary e Main Port
O Secondary)y INtervention Port
)y Legacy Port
Ports Response Signals
MP Main Port Main Port
LP Legacy Port el Intervention Port
IP Intervention Port Legacy Port

OCP-IP Confidential

84 Open Core Protocol Specification

Figure 9 Block Diagram of Directory-Based OCP Coherent System

Legacy Slave Coherent Coherence-
Legacy Master gacy Coherent Slave
(Memory) Master Aware Master
Core Core Core Core Core
Non-Coherent Master Non-Coherent Slave Coherent Master CUISENE A Coherent Slave

Master

.
B = .

Non-Coherent

ocCP

Non-Coherent Bus

L Coherent Initiator Coherent Initiator Coherent Target
Initiator TTarget l l
Interconnect
Serialization Point Request Signals
® Primary —} Main Port
O Secondary Intervention Port
)y Legacy Port
Ports Response Signals
MP Main Port Main Port
LP Legacy Port el Intervention Port
IP Intervention Port Legacy Port

5.10 Master Models

5.10.1 Coherent Master

Each request on the main port generates at most one response. This
requirement makes the design of the coherent master relatively simple. The
coherent slave and the interconnect have to bear additional responsibilities
(as outlined in Section 5.11) to support this requirement.

Consider a coherent master sending a read request to the coherent slave and
waiting for its response.

In the interim, it receives the self intervention request on its intervention port
and one or more system intervention requests, one or more of which may
conflict with the address of the request. Figure 10 shows the abstract model
of the coherent master to deal with coherence and serialization.

OCP-IP Confidential

OCP Coherence Extensions: Theory of Operation 85

OCP-IP Confidential

Figure 10 Abstract Model of Coherent Master

OCP Coherence Master (with caches)

Processor/caches l4— — ¥ Coherence State
A A
v OCP
—»O— Wrapper

fencing point for fencing point for

conflicting main intervention
port request request triggered

triggered by main by self-

port request intervention

Request Response Request Response

OCP Main Port with
Coherence Extensions

Rest of Main Port Main P 0‘
esto ain Port
Request Response - System Intervention
Intervention Requests Coming From
Passing through

Response Others
Home Directory’s

Serialization Point

Intervention Port

Self-Intervention
Requests
<)

An abstract implementation of the secondary serialization point is described
below.

Each request is associated with two fencing points: one at the main port
request path and the other at the intervention port request path. Each fencing
point is associated with a fencing interval.

The main port fencing interval begins when the request enters the lower
queue on the request side and lasts till all the associated response is received
on the main port response queue. During this interval, the fencing logic does
not accept additional conflicting requests on the main port from the master
entity (the processor/cache complex).

The intervention port fencing interval begins when the self intervention enters
the intervention port request side and is detected by the fencing logic. It lasts
until the associated response is received on the main port response queue.
During this interval, the fencing logic does not accept conflicting requests
from the intervention port’s request queue. Note that conflicting intervention
requests arriving at the master before the self intervention request are

86 Open Core Protocol Specification

5.10.2

5.10.3

5.11

5.11.1

OCP-IP Confidential

serviced in order at the intervention port and the appropriate responses
generated (i.e., cache look up, possible cache state change, generation of
response).

Upon receipt of the response for the request, the fences need to be cleared.
The fencing logic is implementation specific.

A non-coherent request follows the same behavior as a legacy master.

Coherence-Aware Master

A master sends a request on its main port. It then waits for the associated
response to come back on the main port. Since the master has no coherent
cache, it does not have an intervention port. Correspondingly, this simplifies
the abstract model of Figure 10 (e.g., only the main port fencing logic is
needed).

A non-coherent request follows the same behavior as a legacy master.

Legacy Master

A legacy master generates only non-coherent requests. It follows the same
behavior as a traditional OCP master. The target addresses are to the non-
coherent address space.

Slave Models

It is convenient to consider snoop-based and directory-based coherent slaves
separately.

Coherent Slave: Directory Based

Figure 11 shows the abstract model of the directory based coherent slave to
deal with coherence and serialization.

The directory is a logically centralized structure which maintains information
of cache lines at each coherent master. Various directory schemes are
possible depending on what information it maintains. To make this
discussion concrete, it is assumed that the directory maintains the cache
state for each cache line that is cached in the coherence domain. If a line is
not present in any coherent master, then the most up-to-date data is present
in the memory.

OCP Coherence Extensions: Theory of Operation 87

OCP-IP Confidential

Figure 11 Directory-Based Coherent Slave Model

Main Port Legacy Port Intervention Port
(from coherent masters) (to memory) (to Coherent Cache Masters)

SEE |

U
F"[}

II-
il

4 non-speculative
speculative

Directory »
Controller

/}O

|

\serialization point

A request received on the main port is looked up in the directory controller to
determine which of the coherent masters need to be sent intervention
requests in addition to the self intervention request. These requests go out on
the intervention port. In addition, a request to memory may also need to be
sent. The figure shows a speculative path option to memory in which case the
memory request is sent before the directory lookup, optimizing for latency.
Alternatively, bandwidth conscious designs could do a lookup and determine
if a memory request is warranted (e.g., if the line is in M state in a master,
then a memory access is not necessary). The directory controller is the serial-
ization point and determines a single order to process conflicting requests
across the coherence domain.

Cache writeback requests arriving on the main port will be written to memory
on the legacy port, after a directory lookup to update the state of the line.

Responses arriving at the intervention port and at the legacy port are
appropriately “merged” and zero or more responses are generated depending
on the nature of the request (for example, on a read request it could be the
read data from memory combined with a completion response or it could be
no response if a modified line was returned directly by a responding coherent
master to the requesting coherent master). The main port of the requesting
coherent master receives only one response for each request. With cache-to-
cache transfers, the modified line that is received (DVA) also serves as a
transaction completion indicator.

As already mentioned, receiving only one response makes the design of the
coherent master relatively simple. It has the potential to introduce race
conditions at the directory, however. It is expected that the implementation
will take care to prevent such races and possible deadlocks. Some scenarios
are outlined below:

88 Open Core Protocol Specification

5.11.2

OCP-IP Confidential

In the case of a cache-to-cache transfer, the directory may choose to not
generate a completion response after the transaction is complete from its
perspective. If the slave does generate a response, then the interconnect agent
must taken on the responsibility to drop this response.

Additionally, the race condition arising below has to be handled by the
directory: Assume that a master (say, B) supplies a modified cache line to the
original requester A. The response arrives at A and the data is consumed and
the transaction is deallocated. It is possible that A generates another request
to the same cache line even before the additional response from B to the
directory controller has arrived at the latter. In such a case, the directory
should hold off servicing the request from A until it has processed the
response. This is typically handled by having separate request and response
queues at the directory.

Note that the directory structure is only logically centralized. The serialization
point refers to a single cache line address. Hence the directory controller may
be physically distributed with each controller being “home” to a distinct set of
cache line addresses. The set of addresses controlled by each controller is
non-overlapping and together cover the complete coherent address space.

Note that the coherent slave is required to have a “system view”—thus, it
needs to identify coherent masters as a requesters, the targets of intervention
requests, and as responders who provide cache line data and cache state.
This information is used to keep the directory up-to-date, to broadcast
intervention requests selectively, etc. OCP provides explicit signals for this
purpose on both the main port (MCohld, SCohld) and the intervention port
(MCohld, SCohld, MCohFwdld, SCohFwdlId).

Coherent Slave: Shoop Based

Figure 12 shows the abstract model of the snoop based coherent slave to deal
with coherence and serialization. In a snoop based design, an intervention
request is broadcast to ALL the coherent masters in its coherence domain.
The directory controller is replaced by a relatively simple piece of logic which
is logically and, frequently, physically a single unit which is the target of all
coherent requests from all coherent masters. This piece of “bus logic” also is
the coherent slave’s single serialization point. Since all main port requests are
targeted to a single coherent slave and the coherent slave, in turn, broadcasts
to all coherent masters, it is not necessary for the coherent slave to have
explicit knowledge of the master ids (the *Cohld fields as in the directory
based design). Apart from these changes, the functionality of the snoop based
design is the same as the directory based design.

OCP Coherence Extensions: Theory of Operation 89

5.11.3

5.12

OCP-IP Confidential

Figure 12 Home Agent Coherent Slave Model (Shoop Based)

Main Port Legacy Port Intervention Port
(from ALL coherent masters) (to memory) (to ALL coherent cache masters)

T {
b Ol Al

o non-speculative
speculative
Broadcast Logic Rt]

g /bo <

|

\serialization point

Frequently, the coherent slave functionality (the shaded portion in Figure 12)
is provided by the interconnect agent itself. In such a case, the main port and
the intervention port of the coherent slave is not exposed as OCP ports. Only
the legacy port gets exposed to the memory subsystem. In this specification,
such an interconnect is called a broadcast interconnect or a snoop-based
interconnect.

-

Just as in the case of the directory based coherent slave, the snoop based
slave and the interconnect need to provide similar functionality to ensure that
the coherent master's main port receives at most one response to a request.

Legacy Slave

A legacy slave receives only non-coherent requests and generates responses.
It follows the same behavior as a traditional OCP slave. The target addresses
are to the non-coherent address space.

Multi-threading and Tags

If accesses of different threads or tags are not related to cache coherency, the
accesses have no ordering requirement. If accesses of different threads or tags
access the same cache line (in coherent address space), the order of the
accesses must be maintained properly. As described in Section 5.7, the order
of all accesses to a coherent memory location is globally ordered at the serial-
ization point.

90 Open Core Protocol Specification

5.13

5.14

5.15

OCP-IP Confidential

Multithreading and tagging are supported in the OCP coherence extensions,
with the above restrictions.

Burst Support

Bursts to coherent space have the following restrictions: They have to be
SRMD, burst lengths have to be the cache line size. Only INCR, XOR, and
WRAP burst sequences are allowed.

Bursts to non-coherent space follow legacy behavior.

Memory Consistency

The serialization mechanism, enforced through intervention in the OCP
coherence extensions, imposes ordering constraints on conflicting cache line
addresses which is globally seen or observed. The set of possible orderings
may be further restricted by the particular memory consistency model
employed by the system. The coherence extensions do not restrict the type of
memory consistency used by the system.

Race Condition, Deadlock, Livelock, and
Starvation

In the context of OCP cache coherence, a race occurs when two entities
concurrently access the same cache line. The home agent establishes the
order and this order is reflected throughout the coherence domain; the race
is thus resolved.

Some possible scenarios that result from race conditions include:

1. The master’s cache state may be changed before it receives its own request
from its intervention request port as self-intervention.

2. If a master receives a read request to the same cache line as the master’s
cache write-back request, the cache write-back request may be canceled.

3. Transactions with data phase may be cancelled. The cc-WB request
coming from main port may be canceled by the requester itself, due to the
cache state change caused by another master’s coherent request.

There are other situations that can cause races, starvation, deadlocks, and
livelocks in cache coherent systems. Solutions to these problems are
implementation dependent, and are outside the scope of the main specifi-
cation. Some specific examples of race conditions which arise in specific
implementations are discussed in the Developer’s Guidelines.

OCP Coherence Extensions: Theory of Operation 91

5.16 Heterogeneous Coherence System

OCP-IP Confidential

With increasing sophistication and the need for multiple functional blocks
(computation intensive, graphics, video, audio, etc.), SoC architectures are
being built as hierarchical subsystems. In such architectures, some
subsystems could be locally cache coherent (usually referred to “subsystem
coherence”). Additionally, there may be a need for cache coherence across
subsystems. In fact, the subsystem cache coherence and global coherence
may follow different cache coherent protocols.

The OCP coherence extensions support coherence in such sophisticated
heterogeneous architectures—this is discussed through the example in
Figure 13. The figure shows a hierarchical system composed of 4 “super
nodes” or subsystems (NUMA nodes 0-3). Each subsystem is in turn
composed of processors with differing cache hierarchies, memory, and I/0.
Note that the memory is physically distributed, but is logically shared.

At the local level, a snoop bus based coherence scheme is used to keep the
subsystem coherent. The directory agent at each node maintains coherence
among the nodes at the global level. Thus, a read request from node O first
snoops locally. If the read request is not satisfied, then it is routed to its
“home” at the global level (say, Node 1). The directory node then handles the
request. Assume that the line is modified state in Node 2 (the directory only
maintains information at this granularity and not at the level of individual
caching agents). This then results in snooping of Node 2 which then returns
the data to the original requester, routed through the Node O directory
controller.

Another level of heterogeneity that is permitted is in the granularity of the
cache line states. For example, the directory could only implement an MSI
based protocol while the snoop based protocol could be based on MESI.

92 Open Core Protocol Specification

OCP-IP Confidential

Figure 13 OCP-Based Heterogeneous SoC Architecture
Proc02 Proc03 Proc04 Proc05
L1i,L1d L1i,L1d L1i,L1d L1i,L1d
Proc00 Proc01 t t t t
L1i,Lad L1i,Lid L2 L2 L2 L2
L2 L2 Shared L3
{ ‘ {
A
ocpP
mP Q P mP (1) P I mP (1) P I } Wrapper
A 4 ﬁ? A 4 ﬁ? A 4 ﬁ?
Snoop-Bus-Based OCP Interconnect @
OCP
LP I MP Q P Wrapper
1100 Memory 0 Chipset
Directory-based Coherence
Module 0 .
MP P
NUMA NUMA
Node 0 Node 1
Serialization Points OCP Connections
@ Frimary MP Main Port 4 4
QO secondary IP Intervention Port OCP Interconnect
LP Legacy Port
OCP Connections A A
= Main Port (bi-directional, with coherence extensions)
—> Intervention Port (bi-directional)
I:(> Legacy Port (bi-directional)
NUMA NUMA
Node 2 Node 3

OCP Coherence Extensions:
Signals and Encodings

6.1

6.1.1

6.1.1.1

OCP-IP Confidential

Definitions

New Transaction Types

Since some of the coherent transactions do not act exactly like legacy write
and read commands, new basic command types are introduced.

Message Command Type

The first new command type, called Message, is similar to a write command
but does not do any data transfer on the port in which the command request
appears.

There are two extensions of this basic type: Posted Message and Non-Posted
Message.

The Posted Message command does not receive any response if port
parameter writeresp_enable is set equal to zero.

The following MCmd commands are of type Posted Message:

e CohWriteBack when port parameter intport_writedata=1

e CohCopyBack when port parameter intport_writedata=1

e CohCopyBackInv when port parameter intport_writedata=1
The non-posted message command always receives a response.

The following MCmd command is of type Non-Posted Message:

94 Open Core Protocol Specification

6.1.1.2

6.2

6.2.1

OCP-IP Confidential

e Cohlnvalidate

These MCmd commands are described in Section 6.2.3.2 on page 99.

Query Command Type

The second new transaction type, called Query, is similar to a read command
and always gets a response from the slave but may not transfer any data.

The following MCmd commands are of type Query:
e CohUpgrade
e CohCompletionSync

These MCmd commands are described in Section 6.2.3.2 on page 99.

Main Port: Parameters, Signals, and
Encodings

Infroduction

The main port is an OCP port with the following extensions, new signals, and
port restrictions:

¢ A MCohCmd signal is added to the request phase.
e The MCmd signal field is extended to allow issuing coherence commands.

e The SResp signal field is extended to support new coherence response
semantics.

e A SCohState signal is added to the response phase to indicate the
coherence installing state (at the response receiving side).

e SRMD bursts must be supported, i.e., the MBurstSingleReq signal must
be supported or, alternatively, the signal may be tied off to a non-default
tie-off value of 1. The datahandshake phase must be enabled. The
reqgdata_together parameter must be set to 1.

e If the port parameter intport_writedata=0, then the CohWriteback
command behaves in this manner:

1. The initial write request occurs on the Main port with the write data
phase appearing on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port.

3. The initiator responds with OK to acknowledge the operation.

e If the port parameter intport_writedata=1, then the CohWriteback
command behaves in this manner:

OCP Coherence Extensions: Signals and Encodings 95

1. The initial write request occurs on the Main port but no write data
phase appears on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port. No write data phase occurs with this request.

3. The initiator responds with the writeback data on the intervention
port, (if the cache line hasn’t been invalidated in between steps 1 and
2).

This option allows self-intervention data responses and “normal” snoop
responses to use the same data paths and thus be ordered.

6.2.2 Main Port Parameters

OCP-IP Confidential

cohcmd_enable

If this parameter is set, the MCohCmd signal is instantiated. The MCmd
signal is extended.

cohstate_enable

If this parameter is set, the SCohState signal is instantiated.

coh_enable

If this parameter is set, the Cached Coherent commands are enabled for
the port.

cohnc_enable

If this parameter is set, the Non-Cached Coherent command set are
enable for the port. Each specific commands within the set have their own
enable parameters.

cohwrinv_enable

If this parameter is set and both coh_enable and writeresp_enable are
also set, then the CohWriteIlnvalidate and CohlInvalidate commands are
allowed on the main port.

read_enable, readex_enable, rdlwrc_enable, write_enable,
writenonpost_enable

These parameters enable the specific commands within the Non-Cached,
Coherent set.

upg_enable

If this parameter is set, the Coh_Upgrade command is enabled for the
port.

intport_exists

If this parameter is set, an associated intervention port is instantiated.

intport_writedata

If this parameter is set and intport_exists is also set, then writeback
data appears on the intervention port instead of the main port.

mcohid_enable

If this parameter is set, the MCohID signal is instantiated.

96 Open Core Protocol Specification

scohid_enable

If this parameter is set, the SCohlID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID and SCohFwdID signals are
instantiated.

mcohid_wdth
Width of the MCohlID signal.

scohid_wdth
Width of the SCohlID signal.

cohfwdid_wdth
Width of the CohFwdID signal.

6.2.3 Signals and Encodings
Table 34 lists the OCP 2.2 signals that must be included in the main port. It
also lists in bold and italic fonts the new signals and their control parameters
introduced for coherent transactions. Unless specifically mentioned, the
default tie-off values are the same as in the legacy specification.
Table 34 Main Port Signals
Group Signal Enable Control Width Control |Comments
Parameters Parameters
Basic Clk Required
MAddr addr=1 addr_wdth Required
MCmd To enable the Required
Bus widened for |coherent
coherent commands:
commands. cohnc_enable
coh_enable
cohwrinv_enable
MData mdata=1 data_wdth Required for SRMD
MDataVvalid datahandshake=1 Required for SRMD
MRespAccept resp Optional
respaccept
SCmdAccept cmdaccept Optional
SData resp =1 data_wdth Required
sdata =1
SDataAccept datahandshake=1 Optional
dataaccept
SResp resp=1 Required

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings 97

Group Signal Enable Control Width Control |Comments
Parameters Parameters
Simple MAddrSpace addrspace addrspace_wdth Optional
MByteEn mdata=1 Required
byteen=1
MDataByteEn mdata=1 Required
datahandshake=1
mdatabyteen=1
MDatalnfo Optional
MRegInfo reqinfo Optional
reqginfo_wdth
SDatalnfo resp=1 Optional
sdatainfo
sdatainfo_wdth
SRespInfo resp=1 Optional
respinfo
respinfo_wdth
Burst MAtomiclength | atomiclength atomiclength_wdth | Tied off to cache
line size
MBurstLength burstlength burstlength_wdth Tied off to cache
line size
MBurstPrecise burstprecise=1 Required.
Set to 1 for
Coherent
commands
MBurstSeq burstseq Required. Only
INCR, XOR, and
WRAP are
allowed.
MBurstSingleReq | datahandshake=1 Required.
burstsinglereqg=1 Set to 1 for
Coherent
commands.
MDatalast datalast=1 Required
MReqgLast reglast Optional
SResplLast resplast Optional

OCP-IP Confidential

98 Open Core Protocol Specification

Group Signal Enable Control Width Control |Comments
Parameters Parameters
Coherence SCohState cohstate_enable Required
Default Tie-off=0
MCohCmd cohcmd_enable Required
Default Tie-off=0
MCohID mcohid_enable | mcohid_wdth Optional; required
for directory
based protocols
and three-hop
protocols
SCohlID scohid_enable scohid_wdth Optional; required
for directory
based protocols
and three-hop
protocols
MCohFwdID cohfwdid_enable | cohfwdid_wdfth Optional; required
for three-hop
protocols
SCohFwdID cohfwdid_enable | cohfwdid_wdfth Optional; required
for three-hop
protocols
Thread MConnID connid=0 Optional
MDataThreadlD |when threads > 1 | threads Optional
datahandshake=0
MThreadBusy mthreadbusy threads Optional
threads
MThreadID when threads > 1 | threads Optional
SDataThreadBusy | sdatathreadbusy | threads Optional
threads
datahandshake=1
SThreadBusy sthreadbusy threads Optional
threads
SThreadID when threads > 1 | threads Optional
resp
Tags MTaglD tags tags Optional
MDataTaglD tags tags Optional
datahandshake
STaglD tags tags Optional
resp
MTagInOrder taginorder Optional
STagIinOrder taginorder Optional
resp

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings

99

Group Signal Enable Control Width Control |Comments
Parameters Parameters
Sideband SReset_n or sreset=1 or Required
MReset_n mreset=1
(all others) (all others) Optional
Test (aly (aln Optional
6.2.3.1 MCohCmd
When set to one, indicates that the command is coherent. When set to zero,
the semantics of the command depend on whether the target address is in
coherent address space or non-coherent address space.
6.2.3.2 MCmd
When the OCP interface supports coherency, the width of the MCmd signal is
extended to five-bits to accommodate the extra coherence commands.
Commands are arranged into two groups: Non-Coherent and Coherent. Non-
Coherent commands are the same set of commands as in the existing OCP 2.2
command set and are also referred to as Legacy commands. Within the
Coherent set of transactions, some existing OCP 2.2 commands remain, but
are re-defined as Coherence-Aware?. The Coherence-Aware commands are
used by initiators that do not contain caches but access the coherent address
space. The new coherent commands must always be issued with MCohCmd
asserted. See Table 35 below for the extensions to the encoding of MCmd.
Table 35 Extended MCohCmd and MCmd Encoding
MCohCmd | MCmd | Command Mnemonic |Data Coherence | Address
Source State Space
Changed?
0 0x0 Idle IDLE None No (none)
0 Ox1 Write WR Requester | No Non-
Coherent
0 0x2 Read RD Home No Non-
Coherent
0 0x3 ReadEx RDEX Home No Non-
Coherent
0 Ox4 ReadLinked RDL Home No Non-
Coherent
0 0x5 WriteNonPost WRNP Requester | No Non-
Coherent

2 They are redefined as Non-Cached because the bulk of the use of these commands will be to
satisfy Non-Cached accesses; however, they could be used by caching agents as well; examples
being write-through caches and cached DMA controllers.

OCP-IP Confidential

100 Open Core Protocol Specification

MCohCmd | MCmd | Command Mnemonic |Data Coherence | Address

Source State Space
Changed?
0 Ox6 WriteConditionall WRC Requester | No Non-
Coherent
0 Ox7 Broadcast BCST Requester | No Non-
Coherent

0 0x8-0xF | (Reserved) (Reserved) |— — —

0 Ox1 Write WR Requester | Yes Coherent

0 0x2 Read RD Home or |Yes Coherent
Owner

0 0x3 ReadEx RDEX Home or |Yes Coherent
Owner

0 Ox4 ReadLinked RDL Home or |Yes Coherent
Owner

0 0x5 WriteNonPost WRNP Requestor | Yes Coherent

0 Ox6 WriteConditionall WRC Requester | Yes Coherent

0 Ox7 Broadcast BCST Not Permitted Coherent

1 0x8 CohReadOwn CC_RDOW |Home or |Yes Coherent
Owner

1 0x9 CohReadShare CC_RDSH Home or |Yes Coherent
Owner

1 OxA CohReadDiscard CC_RDDS |Homeor |No Coherent
Owner

1 OxB CohReadShareAlways |CC_RDSA |Home or |Yes Coherent
Owner

1 oxC CohUpgrade CC_UPG None or |Yes Coherent
Owner

1 OxD CohWriteBack CC_WB Requester | Yes Coherent

1 OxOE- | (Reserved) (Reserved) |— — —

OxOF

1 0x10 CohCopyBack CC_CB Requester | Yes Coherent

1 Ox11 CohCopyBackinv CC_CBI Requester | Yes Coherent

1 Ox12 Cohlnvalidate CC_| None Yes Coherent

1 0x13 CohWritelnvalidate CC_WRI Requester | Yes Coherent

1 Ox14 CohCompletionSync CC_SYNC |None No Coherent

1 Ox15- | (Reserved) (Reserved) |— — —

Ox1F

The semantics of legacy commands targeting coherent address space are
described below. Please see Section 5.6 on page 79 for a list of restrictions
related to cache line granularity and Section 5.13 on page 90 for bursts.

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings 101

Write (0x1, WR)

This form of coherent request is meant to transfer cache line-sized data to
memory (finer granularity can be achieved through the use of byte
enables). While the semantics of this command are very similar to the
legacy Write (WR) command, the home invalidates cache lines for write
invalidate semantics. This command is generated by non-cached or write-
through stores etc. This command is enabled by the port parameter
write_enable.

Read (0x2, RD)

Very similar to a Legacy Read command, but the system returns data from
the owning agent rather than home when the former has the most recent
copy. This command is generated by non-cached loads or instruction
fetches; read misses for write-through memory locations, etc. This
command is enabled by the port parameter read_enable.

ReadEx (0x3, RDEX)

Very similar to a Legacy ReadEx command, but the system returns data
from the owning agent rather than home when the former has the most
recent copy. This command is generated by non-cached loads. The
command is enabled by the port parameter readex_enable.

ReadLinked (0x4, RDL)

Similar to its non-coherent counterpart (RDL), this command can be used
to set a reservation at home, but in a coherent system. This command is

generated by non-cached synchronizing3 loads etc. This command is
enabled by the port parameter rdlwrc_enable.

WriteNonPost (0x5, WRNP)

This form of coherent request is meant to transfer cache line-sized data to
memory (finer granularity can be achieved through the use of byte
enables). While the semantics of this command are very similar to the
legacy WriteNonPost (WRNP) command, the system invalidates cache
lines for write invalidate semantics. This command is generated by non-
cached or write-through stores. This command is enabled by the port
parameter writenonpost_enable.

WriteConditional (0x6, WRC)

Similar to its non-coherent counterpart (WRC), this command can be used
to clear a reservation at home, but in a coherent system. This command
is generated by non-cached synchronizing stores etc. This command is
enabled by the port parameter rdlwrc_enable.

Broadcast (0x7, BCST)
This command is undefined when the target is in coherent space.

CohReadOwn (0x8, CC_RDOW)

This coherent command is used to read data from home with the intent to
modify. This command is generated by processor stores that miss in the
cache hierarchy. The data transfer size is a cache line.

3 The term ‘synchronizing loads’ refers to conditional load instructions, which are available in the
instruction sets of various architectures.

OCP-IP Confidential

102 Open Core Protocol Specification

OCP-IP Confidential

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with a matching address that is in the Modified or
Owned state, the implementation has the choice of:

e writing back the cache line to home, or,
e forwarding the data to the requestor directly from the cache, or,
e doing both.

These options do not affect the behavior of the intervention ports and
main ports so there are no port parameters for these options.

On all CPUs with coherent caches (not including the original requester), if
there is a cache line with the matching address and it is in a state other
than Invalid, the cache line state transitions to Invalid.

The original requester receives the most up-to-date data.

CohReadShared (0x9, CC_RDSH)

This coherent command is used to read data from home with no intent to
modify. This command is generated by processor loads that miss in the
cache hierarchy. The data transfer size is a cache line.

For the MOESI protocol:

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified state, the cache line state transitions to Owned.

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified or Owned states, the data is forwarded to the requestor
directly from the cache.

For the MOESI and MESI protocols:

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with the matching address and it is in the
Exclusive state, the cache line state transitions to Shared.

The implementation may also choose to forward the data to the
requestor directly from the cache, this option is enabled by the
intport_estate_c2c port parameter.

For the MSI and MESI protocol:

On all CPUs with coherent caches (excluding the original requestor), if
there is a cache line with the matching address and it is in the
Modified state, the cache line state transitions to Shared. The cache
line is written back to home.

The implementation may also choose to forward the data to the
requestor directly from the cache. This option does not affect the
behavior of the intervention ports and main ports so there is no port
parameter for this option.

OCP Coherence Extensions: Signals and Encodings 103

If the cache line with the matching address is in the Shared state, the
cache line state stays as previous4.

For all protocols, the original requester receives the most up-to-date data.

CohReadDiscard (0xA, CC_RDDS)

This coherent command is used to read data from the processor caches

and not cause any cache line state changes. It is normally generated by

external agents (such as coherent DMA controllers) to read data from the
processor cache hierarchy. The data transfer size is a cache line.

The cache line state is not modified. The original requester receives the
data.

CohReadShareAlways (0xB, CC_RDSA)

This coherent command is used to read data from home with intent to
never modify. The install state is always shared. This command is
generated by processor instruction fetches for coherent instruction
caches. The cache line state transitions are the same as for
CohReadShared. The data transfer size is a cache line.

Coherent instruction caches are not snooped as there can never be any
modified data and the install state is always shared. The original
requester receives the requested data.

CohUpgrade (0xC, CC_UPG)

This coherent command is used to request ownership of a shared cache
line from the system. It is usually generated for processor stores which hit
cache lines with shared states. This command is of the new type “Query.”
The possible responses are OK (no data) or DVA (data). The data transfer
size is either zero or a cache line.

On all CPUs with coherent caches (excluding the original requester), if
there is a cache line with the matching address and it is in the Modified
or Owned state, the implementation has the choice of writing back the

cache line to home or forwarding the data to the requestor or doing both®.
For this case, the response is DVA. This DVA response only occurs if
another agent has modified its copy of the data after receiving the
CohUpgrade request (A race within the other agent between its local
operations and the initiator's command).

The more common response is OK (the original requestor has an up-to-
date copy of the data), and there is no data phase.

On all CPUs with coherent caches (not including the original requester), if
there is a cache line with the matching address and it is in a state other
than Invalid, the cache line state transitions to Invalid.

The original requester receives the updated data.

4 Some implementations may choose to forward the data to the requestor directly from the cache,
this option requires an additional cache line state (Forwarding/Recent) that is beyond the scope
of this document.

5 These options do not affect the behavior of the intervention and main ports, so there is no port
parameter for these options.

OCP-IP Confidential

104 Open Core Protocol Specification

OCP-IP Confidential

This command is enabled by the port parameter upg_enable. If this
command is not enabled, any store which hits a shared cache line will
generate a CohReadOwn command.

CohWriteBack (0xD, CC_WB)

This coherent command is used to writeback cache lines into home
memory. It has posted write semantics. When intport_writedata is set
to O, the write data phase happens on the main port along with the
request phase. The data transfer size is a cache line.

The user has the option of the write data phase to occur on the
intervention port after a self-intervention (port parameter
intport_writedata=1). For this case, this command is of the new type
“Message.” This option allows self-intervention data responses and
“normal” snoop responses to use the same datapaths and thus be
ordered.

CohCopyBack (0x10, CC_CB)

This coherent command is used to writeback cache lines into home and
the cache line is not evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. It has
posted write semantics. The data transfer size is either zero or a cache
line.

On masters with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state then the cache line
will be written back to home. The cache line state transitions to Shared.
When intport_writedata is set to O, the write data phase occurs on the
main port along with the request phase. When intport_writedata is set
to 1, the write data phase happens on the intervention port as part of the
SNOop response.

On masters with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive state, the cache line state is
unchanged and there is no data phase.

CohCopyBackInv (0x11, CC_CBI)

This coherent command is used to writeback cache lines into home and
the cache line is evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. It has
posted write semantics. The data transfer size is either zero or a cache
line.

On masters with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state then the cache line
will be written back to home. The cache line state transitions to Invalid.
When intport_writedata is set to O, the write data phase occurs on the
main port along with the request phase. When intport_writedata is set
to 1, the write data phase happens on the intervention port as part of the
Snoop response.

On all CPUs with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive states then the cache line state
transitions to Invalid. For this case, there is no data phase.

OCP Coherence Extensions: Signals and Encodings 105

OCP-IP Confidential

CohlInvalidate (0x12, CC_I)

This coherent command is used to purge data from the cache hierarchy.
This command is generated by processor-specific cache management
instructions and also generated by coherent DMA controllers. This
command has non-posted write semantics. The data transfer size is zero.

On masters with coherent caches, if a cache line contains the requested
address, its state is set to invalid, regardless of the previous state.

There is no data phase for this command.

The port parameter cohwrinv_enable must be set as well for the
CohWritelnvalidate command to be used on the main port.

CohWritelnvalidate (0x13, CC_WRI)

This coherent command is used to inject new data into a coherent system
by simultaneously invalidating a cache line from the system and updating
its value at home. The use of byte enables allows the update of partial
cache lines. Typically used by coherent DMA controllers to write new
values into home and remove stale copies from the cache hierarchy. This
command has non-posted write semantics. The data transfer size is less
than or equal to a cache line.

On all CPUs with coherent caches, if the cache line with the matching
address is originally in the Modified or Owned state and the write does not
modify the entire cache line, then the cache line data will be supplied so
that the new write data can be merged. The cache line state transitions to
Invalid. For this case, SResp is equal to DVA. The data transfer happens
on the intervention port as the snoop response. For this case, the home
agent is responsible to merge the newer write data with the older snoop
response data before the data is written to system memory.

On all CPUs with coherent caches, if the cache line with the matching
address is in the Shared or Exclusive states or if the new write modifies
all bytes within the cache line, then the cache line state transitions to
invalid. For this case, SResp is equal to OK and there is no data phase.

The port parameter cohwrinv_enable must be set as well for the
CohWritelnvalidate command to be used on the main port.

CohCompletionSync (0x14, CC_SYNC)

This coherent cache command is used to maintain ordering. This
command is of the new type “Query.” The slave, after receiving this
command, in an implementation specific fashion, will send the response
when it is satisfied that transaction ordering has been satisfied. Normally
this is used to stall the initiator until all preceding requests have reached
a global ordering point within the system. The slave responds with a single
cycle of DVA on the SResp bus.

For this command there is no data phase.

106 Open Core Protocol Specification

6.2.3.3 SCohState

This signal indicates the install state and is part of the response phase and is
passed back to the master with any response to a coherent request. It is also
used to indicate the prior state of the cache line on interventions. For non-
coherent and coherence-aware requests, this signal is a “don’t care”.
SCohState is a three-bit field with encodings as shown in Table 36.

Table 36 SCohState Encoding
SCohState |Name Mnemonic
0x0 Invalid I

0x1 Shared S

0x2 Modified M

0x3 Exclusive E

0x4-0x5 Reserved —

0x6 Owned (0]

0x7 Reserved —

6.2.3.4 SResp

Existing responses remain as in OCP 2.2, but a new one (OK) is added to
support intervention port related transactions and main port transaction
(e.g., CC_UPG). The OK response indicates completion without any data
transfer. If the OCP interface supports coherence extensions, SResp becomes
a three-bit field with encodings as shown in Table 37, below.

Table 37 SResp Encoding

SResp Value Response Mnemonic
0x0 No response NULL

Ox1 Data valid / accept DVA

0x2 Request failed FAIL

0x3 Response error ERR

Ox4 Ack without data fransfer | OK

0x5-0x7 Reserved -

6.2.3.5 MReqlnfo

OCP-IP Confidential

MReqInfo is not explicitly defined, but mentioned to remind implementors
that it is available for sending more coherency hints if desired. Some examples
are Instruction or Data miss, Cache management instructions etc.

OCP Coherence Extensions: Signals and Encodings 107

6.2.4 Transfer Phases

Table 38 Main Port transfer phases
MCmd Phases
writeresp_enable=0 writeresp_enable=1
intport writedata=0 |intport writedata=1 |intport writedata=0 |intport writedata=1
WR Request (with write | Request (with write | Request (with write | Request (with write
data) data) data); data);
Response Response
RD Request; Request; Request; Request;
Response Response Response Response
RDEX Request; Request; Request; Request;
Response Response Response Response
RDL Request; Request; Request; Request;
Response Response Response Response
WRNP Request (with write | Request (with write | Request (with write | Request (with write
data); Response data); Response data); data);
Response Response
WRC Request (with write | Request (with write | Request (with write | Request (with write
data) data) data); data);
Response Response
CC_RDOW |Request; Request; Request; Request;
Response Response Response Response
CC_RDSH Request; Request; Request; Request;
Response Response Response Response
CC_RDDS |Request; Request; Request; Request;
Response Response Response Response
CC_RDSA |Request; Request; Request; Request;
Response Response Response Response
CC_UPG Request; Request; Request; Request;
Response’ Response! Response’ Response!
CC_UPG Request; Request; Request; Request;
Response? Response? Response? Response?
CC_WB Request (with write | Request (no write | Request (with write | Request (no write
data) data) data); data);
If data is resident Response Response
within local cache, WriteBack data is
the CopyBack supplied with self-
data is supplied intervention
with intfervention response on
response on the Infervention Port (if
Intervention Port. cache line
ownership hasn’t
moved to another
master—data
race)

OCP-IP Confidential

108 Open Core Protocol Specification

MCmd Phases
writeresp_enable=0 writeresp_enable=1
intport_writedata=0 |intport writedata=1 |intport writedata=0 |intport writedata=1
CC_CB Request (with write | Request (no write | Request (with write | Request (no write
data) data) data); data);
If data is resident Response Response
within local cache, If modified data is
the CopyBack resident within local
data is supplied cache, the
with intfervention CopyBack Data is
response on the supplied with
Intervention Port. intervention
response on the
Intervention Port.
CC_CBI Request (with write | Request; Response | Request (with write | Request (no write
data) Non-Posted Write | data); data);
Response Response
If modified data is
resident within locall
cache, CopyBack
Data is supplied
with intervention
response on the
Intervention Port.
CC.l Request (with write | Request; Request (with write | Request; Response
data); Response data);
Response Response
CC_WRI Request (with write | Request; Request (with write | Request (with write
data); Response data); data);
Response Response Response
If data is resident If modified data is
within local cache, |resident withinlocal
the snoop datais | cache, the snoop
supplied with the data is supplied
intfervention with the
response on intervention
Intervention Port. response on the
Intervention Port.
CC_SYNC |Request; Request; Request;
Response Response Response

1. Cache line ownership stays with original requesting master.
2. Data transfer only occurs if cache line ownership had moved to another master (data-race)

6.2.5 Transfer Effects

Read, CohReadOwn, CohReadShared, CohReadDiscard,
CohReadSharedAlways

OCP-IP Confidential

The master receives the requested data on SData.

OCP Coherence Extensions: Signals and Encodings 109

OCP-IP Confidential

ReadEx

The master receives the requested data on SData. Sets a lock on the
address for the initiating thread.

ReadLinked
The master receives the requested data on SData. Sets a reservation on
that address.

Write, WriteNonPost
The request phase includes the write data.

WriteConditional

If there was an existing reservation for the address by the same initiating
thread, the request phase includes the write data. If the write proceeds in
this manner, the reservation for the address is cleared.

CohUpgrade
If the cache line ownership is still resident within the requesting master,

there is no data transfer.

If the cache line ownership had moved to another master (data race), then
the master receives the requested data on SData.

CohWriteBack

If port parameter intport_writedata=1 there is no data transfer on the
main port. The data is transferred on the intervention port.

If port parameter intport_writedata=0, the request phase includes the
write data.
CohCopyBack, CohCopyBackInv
There is no data transfer on the main port. If the data was resident within
any cache, the data is transferred on the intervention port.
CohlInvalidate
The SResp value is OK and there is no data transfer phase.

CohWriteInvalidate
The write data is sent along with the Request. The SResp value is OK.

If the data was resident within any cache, the snoop data is written back
on the intervention port. For this case, the home agent is responsible to
merge this older snoop response data with the newer write data.

CohCompletionSync

The master receives the response from the slave that previous
transactions have been made globally visible.

110 Open Core Protocol Specification

6.3 Intervention Port: Parameters, Signals, and

6.3.1

OCP-IP Confidential

Encodings

Infroduction

The intervention port signals and encodings are similar to the main port’s
signals and encodings for the main port Coherent command set (CC_*).
However, many of the port parameters and configurations are fixed.

e The intervention slave only sends out data, it does not receive data.

e ALL intervention port requests must have a response, e.g., the port
parameter writeresp_enable must be set to 1.

e If port parameter intport_writedata=0, then the CohWriteback,
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port with the write data
phase appearing on the Main port.

2. The home agent sends a self-intervention request to the initiator on
the intervention port. No write data phase occurs with this request.

3. The initiator responds with OK to acknowledge the operation.

e If port parameter intport_writedata=1, then the CohWriteback,
CohCopyBack, and CohCopyBackInv commands behave in this manner:

1. The initial write request occurs on the Main port but no write data
phase appears on the Main port.

2. The home agent coherent slave sends a self-intervention request to the
initiator on the intervention port. No write data phase occurs with this
request.

3. The initiator responds with the writeback data on the intervention
port, (if the cache line hasn’t been invalidated in between steps 1 and
2).

This option allows self-intervention data responses and “normal” snoop
responses to use the same datapaths and thus be ordered.

e There is an option for split transactions on the Intervention Port. This
option allows for responses to precede the data transfer. For this option,
new data handshaking signals are added to aid in transferring data from
the slave back to the master. These signals are MDataAccept and
SDataValid. If threads are used with these split transactions, an
additional hand-shaking signal, MDataThreadBusy, is used.

Legacy reads to coherent address space are processed as follows:

e ReadEx: The coherent slave issues I_CBI, the intervention port request to
write back a possibly modified cache line to the home memory location
and evict the line from the cache hierarchy of each coherent master. The
memory is also read (in an implementation specific manner, either

OCP Coherence Extensions: Signals and Encodings 111

speculatively or after the response(s) to I_CBI are received). The slave then
sets a lock for the initiating thread on this address at the home memory.
The data is returned to the requesting master (either the contents of the
modified cache line or the memory contents). It is assumed that an
implementation specific mechanism ensures that this is the only ReadEx
operating on this location.

e Other Read Operations: The coherent slave issues I RDSA, the
intervention port request to read a possibly modified cache line and
update the home. The memory is also read (in an implementation specific
manner, either speculatively or after the response(s) to I_RDSA are
received). With Read Linked, the slave then sets a reservation in a monitor
for the initiating thread on this address. The data is returned to the
requesting master.

Legacy writes to coherent address space are processed as follows:

e Clearing Write®: (Note the home agent coherent slave will be able to
determine if this is a clearing write). The data is written to main memory
(request on legacy port of coherent slave) and the lock is cleared
atomically in an implementation dependent manner.

e Write Conditional: If a reservation is set for the matching address and for
the corresponding thread, the slave issues I WRI, the request to update
the value at home. If the reservation is cleared, the write is not performed,
a FAIL response is returned and no reservations are cleared.

e Other Writes: Clears the reservations on any conflicting addresses set by
other threads. The slave issues I_WRI, the intervention port request to
update the value at home.

6.3.2 Port Parameters

intport_writedata

If this parameter is set, then writeback data appears on the intervention
port instead of the main port.

intport_split_tranx

If this parameter is set, then the intervention port data phase occurs after
the intervention port response phase instead of being coincident with the
response phase. The signals MDataAccept and SDataValid are
instantiated.

intport_estate_c2c

If this parameter is set, then coherent slaves supply intervention data
when their matching local cache lines are in the Exclusive state.

mcohid_enable
If this parameter is set, the MCohlID signal is instantiated.

6 The term clearing write refers to the Write or WriteNonPost command to the matching address
issued after a ReadEx on that thread. It is called a clearing write as it clears any reservations on
the matching address set by other threads.

OCP-IP Confidential

112 Open Core Protocol Specification

6.3.3

scohid_enable

If this parameter is set, the SCohlID signal is instantiated.

cohfwdid_enable

If this parameter is set, the MCohFwdID signal is instantiated.

mcohid_wdth

Width of the MCohlID signal.

scohid_wdth

Width of the SCohlID signal.

cohfwdid_wdth

Width of the CohFwdID signal.

Signals and Encodings

Table 39 gives an overview of which signals can be or must be included. New
signals and their control parameters introduced for the Coherent
Transactions are in bold and italicized font.

Table 39 Intervention Port Signals
Group Signal Enable Control Width Control Comments
Parameters Parameters
Basic Clk Required
MAddr addr=1 addr_wdth Required
MCmd Required (only a
subset of the
coherent
commands are
allowed)
MData mdata=0 Not allowed
MDataVvalid datahandshake=0 Not allowed
MRespAccept respaccept Optional
SCmdAccept cmdaccept Optional
SData sdata=1 data_wdth Optional
SDataAccept dataaccept=0 Not allowed
SResp resp=1 Required (only
NULL, DVA, and OK
responses allowed)

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings 113

Group Signal Enable Control Width Control Comments
Parameters Parameters
Simple MAddrSpace addrspace addrspace_wdth Optional
MByteEn byteen=0 Not allowed
MDataByteEn mdatabyteen=0 Not allowed
MDatalnfo mdatainfo=0 Not allowed
MRegInfo reqinfo reqinfo_wdth Optional
SDatalnfo sdatainfo sdatainfo_wdth Optional
SRespInfo respinfo respinfo_wdth Optional
Burst MAtomicLength atomiclength atomiclength_wdth | Tied off to cache
line size
MBurstLength burstlength burstlength_wdth Tied off to cache
line size
MBurstPrecise burstprecise=1 Tied off to 1
MBurstSeq burstseq Required. Only
INCR, XOR, and
WRAP are allowed.
MBurstSingleReq burstsinglereg=1 Tied off to 1
MDatalLast datalast=0 Not allowed
MRegLast reglast=0 Not allowed
SResplLast resplast=0 Not allowed

OCP-IP Confidential

114 Open Core Protocol Specification

Group

Signal

Enable Control
Parameters

Width Control
Parameters

Comments

Coherence

SCohState

Required, used to
transmit current
state of the cache
line

MReqSelf

Required

MCohID

mcohid_enable

mcohid_wdth

Optional; required
for directory based
protocols and
three-hop

protocols!

SCohID

scohid_enable

scohid_wdth

Optional; required
for directory based
protocols and
three-hop

protocols!

MCohFwdID

cohfwdid_enable

cohfwdid_wdth

Optional; required
for three-hop
protocols!

SCohFwdID

cohfwdid_enable

cohfwdid_wdth

Optional; required
for three-hop
protocols!

SDataValid

intport_split_franx

Optional; needed
for split fransaction
responses

SDatalast

Required

MDataAccept

intport_split_tranx

Optional; needed
for split fransaction
responses

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings 115

Group Signal Enable Control Width Control Comments
Parameters Parameters
Thread MConnID connid=0 Optional
MDataThreadID threads threads Not allowed
datahandshake=0
MThreadBusy mthreadbusy threads Optional
threads
MThreadID threads threads Optional
MDataThreadBusy | mdatathreadbusy | threads Optional
threads
SDataThreadBusy sdatathreadbusy=0 | threads Not allowed
threads
SThreadBusy sthreadbusy threads Optional
threads
SThreadID threads threads Optional
resp
SDataThreadID threads threads Optional
resp
Tags MTagID tags tags Optional
MDataTaglD tags tags Not allowed
datahandshake=0
STaglD tags tags Optional
resp
MTagInOrder taginorder Optional
STagIinOrder taginorder Optional
resp
Sideband |SReset_n or sreset=1 or Required
MReset_n mreset=1
(all others) (all others) Not allowed
Test (ally (ally Not allowed

L. If coherent master is responsible for providing the system view (see Section 5.2 on page 74).

6.3.3.1 MCmd

The intervention port commands are shown in the Table 40 below. The
commands that are write-like (including CohWriteBack, CohCopyBack,
CohCopyBackInv, CohWriteInvalidate) have no associated write data during
the request phase. If the port parameter intport_writedata=1, the write
data transfer phase occurs on the intervention port during the data response
phase for the self intervention. The mnemonics for the intervention port
commands are prefixed by I_ to distinguish them from the main port
commands.

OCP-IP Confidential

116 Open Core Protocol Specification

OCP-IP Confidential

Table 40 Intervention Port MCohCmd and MCmd Encoding
MCmd Command Mnemonic
0x0 Idle IDLE
Ox1-0x7 (Reserved) (Reserved)
Ox8 IntvReadOwn |_RDOW
0x9 IntvReadShare |_RDSH
OxA IntvReadDiscard I_RDDS

OxB InfvReadShareAlways I_RDSA
OxC IntvUpgrade I_UPG

OxD IntvWriteBack |_WB
OxE-OxF (Reserved) (Reserved)
0x10 IntvCopyBack |_CB

Ox11 IntvCopyBackinv |_CBI

0x12 Intvinvalidate Il

0x13 IntvWritelnvalidate |_WRI
Ox14-0x1F (Reserved) (Reserved)

IntvReadOwn (0x8, I RDOW)

This coherent command is used to read data from home with the intent to
modify. This command is generated by processor stores that miss in the
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadShared (0x9, I_RDSH)

This coherent command is used to read data from home with no intent to
modify. This command is generated by processor loads that miss in the
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadDiscard (0xA, I RDDS)

This coherent command is used to read data from the processor caches
and not cause any cache line state changes. It is generated by external
agents (such as coherent DMA controllers) to read data from the processor
cache hierarchy. The slave responds with either SResp=OK (no data) or
DVA (data).

IntvReadShareAlways (0xB, I_RDSA)

This coherent command is used to read data from home with intent to
never modify. This command is generated by processor instruction
fetches. The slave responds with either SResp=OK (no data) or DVA (data).

OCP Coherence Extensions: Signals and Encodings 117

OCP-IP Confidential

IntvUpgrade (0xC, I_UPG)

This coherent command is used to request ownership of a shared cache
line from the system. It is usually generated for processor stores which hit
cache lines with shared states. This is a non-posted write. The slave
responds with either SResp=OK (no data) or DVA (data).

The DVA response occurs when the local CPU has modified its data after
the Upgrade command was sent by the originating CPU.

IntvWriteBack (0xD, I_WB)

This coherent command is used to writeback cache lines into home. This
command is generated when a cache miss causes modified cache lines to
be evicted from the cache hierarchy. This is a non-posted write. The slave
responds with either SResp=OK (no data) or DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

For the self-intervention case, it is possible for the slave to response with
OK instead of DVA. This case occurs if another CPU has gained ownership
of the cache line before the original writeback transaction has been
processed. The cache line would have been previously been written back
for this change of ownership (Race between another core requesting the
line and writeback completing at the originating CPU).

IntvCopyBack (0x10, I_CB)

This coherent command is used to writeback cache lines into home and
the cache line is not evicted from the cache hierarchy. This command is
generated by processor-specific cache management instructions. This is a
non-posted write. The slave responds with either SResp=OK (no data) or
DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

IntvCopyBackInv (0x11, I_CBI)

This coherent command is used to writeback cache lines into home and
the cache line is evicted from the cache hierarchy. Functionally, it is the
same as CohWriteBack, but this command is generated by processor-
specific cache management instructions. This is a non-posted write. The
slave responds with either SResp=OK (no data) or DVA (data).

The user has the option of placing the writeback data on this port instead
of the main port (Port parameter intport_writedata=1). This option allows
self-intervention data responses and “normal” responses to use the same
datapaths.

Intvinvalidate (0x12, I I)

This coherent command is used to purge data from the cache hierarchy.
If a cache line contains the requested address, its state is set to invalid,
regardless of the previous state. Typically used by coherent DMA

118 Open Core Protocol Specification

6.3.3.2

6.3.3.3

6.3.3.4

6.3.3.5

OCP-IP Confidential

controllers to remove stale copies of data from the cache hierarchy and
also by processor-specific cache management instructions. This is a non-
posted write. The slave responds with SResp=0OK.

IntvWriteInvalidate (0x13, I WRI)

This coherent command is used to inject new data into a coherent system
by simultaneously invalidating a cache line from the system and updating
its value at home. Typically used by coherent DMA controllers to write new
values into home and remove stale copies from the cache hierarchy. This
is a non-posted write. The slave responds with either SResp=OK (no data)
or DVA (data). The original data is merged with the new data before it is
written to home.

In some systems, a third port for coherent IO traffic can be used to allow
external masters (such as DMA engines) to inject these WriteInvalidate
commands into the coherent memory system without requiring the CPU main
ports to set writeresp_enable=1.

SCohState

This signal indicates the cache line state of the slave cache and is part of the
intervention response phase. Its encoding is identical to the description of the
signal with the same name in the main port signal descriptions (see Table 36
on page 106).

MReqgSelf

MRegSelf is an output of the master and an input to the slave. It is valid when
MCimd is not IDLE. It indicates to the intervention slave that this intervention
request is a result of a main port request which originated from the master
port of this agent (i.e., it is a self-intervention). This bit is typically asserted by
the interconnect. The concept of self-intervention is critical in OCP 3.0 (along
with a serialization point) to enforce global order in the coherent system.

MCohlID

MCohlID specifies the target of the request. It is valid when MCmd is not IDLE.
For directory based coherence it is used at the intervention ports to indicate
the target of the response. For an interrupt command from the main port it is
used to indicate the target of the command. This is an optional signal which
could be used in three hop protocols when the coherent master also provides
the system view (see Section 5.2 on page 74).

SCohlID

SCohlD specifies the target of the response. It is valid when SResp is not
NULL. For directory based coherence it is used at the intervention ports to
indicate the target of the response. This is an optional signal which could be
used in three hop protocols when the coherent master also provides the
system view (see Section 5.2 on page 74).

OCP Coherence Extensions: Signals and Encodings 119

6.3.3.6

6.3.3.7

6.3.3.8

6.3.3.9

6.3.3.10

6.3.4

OCP-IP Confidential

McohFwdID

MCohFwdID specifies the target for a three hop transaction. It is valid when
MCmd is not IDLE. Its main use is meant in directory based coherence where
it is used at the intervention port to signal to the target that if a three hop
transaction is required, then this is the address of the final target. This is an
optional signal which could be used in three hop protocols when the coherent
master also provides the system view (see Section 5.2 on page 74).

SDataValid

SDataValid is a optional signal. This signal is included if the port parameter
intport_split_tranx is set equal to 1. It is an output from the slave and an
input to the Master to denote that snoop intervention data is valid on SData.

SDatalLast

SDatalast is a required signal. It is an output from the slave and an input to
the Master to denote that the last data beat of the transfer is valid on SData.

MDataAccept

MDataAccept is an optional signal. This signal is included if the port
parameter intport_split_tranx is set equal to 1. It is an output from the
Master and an input to the slave to denote that the Master can accept snoop
intervention data from the slave.

MDataThreadBusy

MDataThreadBusy is an optional signal used if threads have been enabled for
the Intervention Port. The master notifies the slave that it cannot accept any
data associated with certain threads. This field is a vector (one bit per thread).
Avalue of 1 on any given bit indicates that the thread associated with that bit
is busy. Bit O corresponds to thread O, and so on. This signal is enabled by
the port parameter mdatathreadbusy. The semantics of this signal are
controlled by the port parameters mdatathreadbusy_exact and
mdatathreadbusy_pipelined.

Signal Groups

The following table shows the Intervention Port signals placed into specific
groups. All signals within one group as asserted at the same time.

120 Open Core Protocol Specification

Table 41 Intervention Port Signal Groups

Group Signal Condition

Request MAddr always
MCmd always
MAddrSpace always
MRegInfo Optional
MAtomicLength Optional
MBurstLength always
MBurstPrecise always
MBurstSeq always
MBurstSingleReq always
MReqgSelf always
MCohID Optional
MCohFwdID Optional
MTagID Optional
MTagInOrder Optional
MThreadslD Optional

Response SResp always
SRespInfo Optional
SCohState always
STagID Optional
STagIinOrder Optional
SCohID Optional
SThreadID Optional

RespDataHandShake | SData Always
SDataVvalid Optional
SDatalLast Always
SDatalnfo Optional
STagID Optional
STagIinOrder Optional
SCohID Optional
SThreadID Optional
SDataThreadID Optional

OCP-IP Confidential

OCP Coherence Extensions: Signals and Encodings 121

6.3.5 Transfer Phases

Table 42 shows the transfer phases allowed given specific values of the signal
MReqgSelf and the parameter intport_writedata.

Table 42 Intervention Port transfer phases
MCmd Phases
MReqSelf=0 MReqSelf=1
intport_writedata=1 intport_writedata=0
|_RDOW Request; Response; Request; Response; Request; Response;
RespDataHandShake!
|_RDSH Request; Response; Request; Response Request; Response
RespDataHandShake!
|_RDDS Request; Response; Request; Response Request; Response
RespDataHandShake!
|_RDSA Request; Response; Request; Response Request; Response
RespDataHandShake!
I_UPG Request; Response; Request; Response Request; Response
RespDataHandShake!
I_WB Request; Response? Request; Response; Request; Response
RespDataHandShake®
I_CB Request; Response? Request; Response; Request; Response
RespDataHandShake®
I_CBI Request; Response? Request; Response; Request; Response
RespDataHandShake3
|| Request; Response Request; Response Request; Response
_WRI Request; Response; Request; Response Request; Response
RespDataHandShake? RespDataHandShake? RespDataHandShake

- RespDataHandShake group active if cache line was in M or O state in local cache. If port
parameter intport_estate_c2c=1, then RespDataHandShake group also active if cache
line was in E state in local cache.

 The request and response transfers are not needed in directory based protocols since the
intervention requests are only directed to the original requester. In snoop-based protocols,
some implementations may choose to broadcast the intervention requests, in which case
these transfers are needed.

- RespDataHandShake phase might not occur if cache line ownership has been passed to
another CPU subsequent to when the originating CC_WB command was issued. WriteBack
Data is supplied with self-intervention response

- RespDataHandShake group only active if the cache line in the local cache was in the M or
O state.

6.3.6 Phase Ordering within a Transfer

The intervention port follows the legacy OCP phase ordering rules except for
the following:

OCP-IP Confidential

122 Open Core Protocol Specification

6.3.7

Table 43

e If the port parameter intport_split_tranx=1 then it is allowed that the
Response phase can begin before the associated RespDataHandShake
phase.

e Ifthe port parameter intport_split_tranx=1 then it is allowed that the
Response phase can end before the associated RespDataHandShake
phase.

These are optimizations to allow forwarding of the local cache tag lookups
before the local cache data array lookup is completed.

Transfer Effects

All transaction requests on the Intervention Port require a response from the
slave. Some of the transactions may also cause data transfer on the port.

The SCohState signal reports the cache line state prior to the intervention.

If port parameter intport_split_tranx=0, then the SResp signals reports
whether the local slave will deliver data or not. The Response phase is
coincident with the data transfer phase.

If port parameter intport_split_tranx=1, then the SDataValid signal
reports when the local slave delivers data. The response phase is single cycle
and occurs before the data transfer phase. The Response is reported on the
SResp signal.

Summary of Transfer Effects

Condition(s) SResp Behavior

IntvReadOwn, IntvReadShared, IntvReadDiscard,
IntvReadSharedAlways, IntvUpgrade

MReqgSelf = b0, Cache Line State =M, O DVA (data transfer)
intport_estate_c2c=1, MReqgSelf = b0, Cache Line State = E DVA (data transfer)
All other cases OK (no data transfer)
IntvWriteBack

infport_writedata=1, MRegSelf = b1, Cache Line State =M, O DVA (data fransfer)

All other cases OK (no data transfer)

IntvCopyBack, IntvCopyBackinv

infport_writedata=1, Cache Line State =M, O DVA (data transfer)

All other cases OK (no data transfer)

IntvWritelnvalidate

Cache Line State =M, O DVA (data fransfer)

All other cases OK (no data transfer)

Intvinvalidate

All cases

OK (no data transfer)

OCP-IP Confidential

Interface Configuration File

7.1

OCP-IP Confidential

The interface configuration file describes a group of signals, called a bundle.
For OCP interfaces, the bundle is pre-defined, and no interface configuration
file is required. If you are using an interface other than OCP in your core RTL
configuration file, the interface configuration file is required.

Name the file <bundle-name>_intfc.conf where bundle-name is the name
given to the bundle that is being defined in the file.

Lexical Grammar

The lexical conventions used in the interface configuration file are:

<name> : (<letter> | '_") (<letter> | '_' | <digit>)*
<letter>:'a'..'z' | 'A'.. 'Z'
<digit> :'0"..'9’

<number> : <integer> | <float>

<integer> : <decimal_integer> | <hexadecimal_integer> | <octal_integer> |
<binary_integer>

<decimal_integer> : <digit>+

<hexadecimal_integer> : 'Ox'<hexadecimal_digit>+

<hexadecimal_digit> : <digit> | 'a' .. 'f | 'A' .. 'F'

<octal_integer> : 'Oo'<octal_digit>+

<octal_digit>: '0' .. '7"

<binary_integer> : 'Ob'<binary_digit>+

<binary_digit>:'0" | 'l'

<float> : <mantissa> [<exponent>]

<mantissa>: (<decimal_integer> '.") |(.' <decimal_integer>) |
(<decimal_integer> '." <decimal_integer>)

<exponent>: ('e' | 'E') ['+' | '-'] <decimal_integer>

124 Open Core Protocol Specification

7.2 Syntax

The interface configuration file is written using standard Tcl syntax. Syntax
is described using the following conventions:

Symbol |Meaning

) optional construct

| or, alternate constructs

* zero or more repetitions

+ one or more repetitions

<> enclose names of syntactic units

O are used for grouping

{1} are part of the format and are required. An open brace
must always appear on the same line as the statement

\ line continuation character

comments

The syntax of the interface configuration file is:

version <version_string>
bundle <bundle_name> \
[revision <revision_string>] {<bundle_stmt>+}

where:

<bundle_stmt>:
| interface_types <interface_type-name>+
| net <net_name> {<net_stmt>*}
| proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

<net_stmt>:
| direction (input|output|inout)+
| width <number-of-bits>
| vhdl_type <type-string>
| type <net-type>
| proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

The file must contain a single version statement followed by a single bundle
statement. The bundle statement must contain exactly one
interface_types statement, and one or more net statements. Each net
statement must contain exactly one direction statement and may contain
additional statements of other types.

OCP-IP Confidential

Inferface Configuration File 125

OCP-IP Confidential

version

The version statement identifies the version of the interface
configuration file format. The version string consists of major and minor
version numbers separated by a decimal. The current version is 4.5.

bundle

The bundle statement is required and indicates that a bundle is being
defined instead of a core or a chip. Make the bundle-name the same name
as the one used in the interface configuration file name.

Use a bundle_name of ocp for OCP 1.0 bundles, ocp2 for OCP 2.x bundles,
and ocp3 for OCP 3.x bundles. The optional revision_string identifies
a specific revision for the bundle. If not provided, the revision_string
defaults to 0. The pre-defined ocp, ocp2, and ocp3 bundles use the default
value of revision_string to refer to the 1.0, 2.0, and 3.0 versions of the
OCP Specification, respectively. For ocp2 bundles, set revision_string
to 2 to refer to the 2.2 version of the OCP Specification.

interface_types

The interface_types statement lists the legal values for the interface
types associated with the bundle. Interface types are used by the toolset
in conjunction with the direction statement to determine whether an
interface uses a net as an input or output signal. This statement is
required and must have at least one type defined.

Predefined interface types for OCP bundles are slave, master,
system_slave, system_master, and monitor. These are explained in
Table 18 on page 35.

net

The net statement defines the signals that comprise the bundle. There
should be one net statement for each signal that is part of the bundle. A
net can also represent a bus of signals. In this case the net width is
specified using the width statement. If no width statement is provided,
the net width defaults to one. A bundle is required to contain at least one
net. The net-name field is the same as the one used in the net-name field
of the port statements in the core RTL file described in Chapter 8.

proprietary

For a description, see "Proprietary Statement” on page 137.

direction

The direction statement indicates whether the net is of type input,
output, or inout. This field is required and must have as many direction-
values as there are interface types. The order of the values must duplicate
the order of the interface types in the interface_types statement. The legal
values are input, output, and inout.

vhdl_type

By default VHDL signals and ports are assumed to be std_logic and
std_logic_vector, but if you have ports on a core that are of a different
type, the vhdl_type command can be used on a net. This type will be
used only when soccomp is run with the design_top=vhdl option to
produce a VHDL top-level netlist.

126 Open Core Protocol Specification

OCP-IP Confidential

type

The type statement specifies that a net has special handling needs for
downstream tools such as synthesis and layout. Table 44 shows the
allowed <net-type> options. If no <net-type> is specified, normal is

assumed.
Table 44 net-type Options
<net-type> Description
clock clock net

clock_sample

clock sample net

jtag_tck JTAG test clock

jtag_tdi JTAG test datain

jtag_tdo JTAG test data out

jtag_tms JTAG test mode select

jtag_tfrstn JTAG ftest logic reset

normal default for nets without special handling needs
reset reset net

scan_enable

scan enable net, serves as mode control between functional and
scan data inputs

scan_in scan input net

scan_out scan output net

test_mode test mode net, puts logic into a special mode for use during
production testing

proprietary

For a description, see "Proprietary Statement” on page 137.

The following example defines an SRAM interface. The bundle being defined
is called sram1l6.

bundle

Two interface types are defined,
"controller"

"sraml6" {

one is labeled
and the other is labeled "memory"

interface_types controller memory

A net named Address is defined to be part of this bundle.

net

The direction of the

"Address" {

"Address" net is defined to be

"output" for interfaces of type "controller" and "input"

for interfaces of type

"memory" .

direction output input

The width statement indicates that there are 14 bits in

Intferface Configuration File 127

the "Address" net.
width 14

}

net "WData" {
direction output input
width 16

}

net "RData" {
The direction of the "RData" net is defined to be

"input" for bundle of type "controller" and "output" for
bundles of type "memory".
direction input output
width 16
}
net "We_n" {
direction output input
}
net "Oe_n" {
direction output input
}
net "Reset" {
direction output input
type reset
}
close the bundle
}

OCP-IP Confidential

8

Core RIL Configuration File

OCP-IP Confidential

The required core RTL configuration file provides a description of the core and
its interfaces. The name of the file needs to be <corename>_rtl.conf, where
corename is the name of the module to be used. For example, the file defining
a core named uart must be called uart_rtl.conf.

For a description of the lexical grammar, see page 123.

Syntax

The core RTL configuration file is written using standard Tcl syntax. Syntax
is described using the following conventions:

[1 optional construct

| or, alternate constructs

* zero or more repetitions

+ one or more repetitions

<> enclose names of syntactic units

() are used for grouping

{} are part of the format and are required. An open brace must always
appear on the same line as the statement

comments

The syntax for the core RTL configuration file is:

version <version_string>

module <core_name> {<core_stmt>+}

core_name is the name of the core being described and:

<core_stmt>:
| icon <file_name>
| core_id <vendor_code> <core_code> <revision_code>

130 Open Core Protocol Specification

8.2

OCP-IP Confidential

[<description>]
| interface <interface_name> bundle <bundle name> [revision
<revision_string>]
[{<interface_body>*}]
| addr_region <name> {<addr_region_body>*}
| proprietary <vendor_code> <organization_ name>
{<proprietary_ statements>}

The file must contain a single version statement followed by a single module
statement. The module statement contains multiple core statements. One
core_id must be included. At least one interface statement must be included.
One icon statement and one or more addr_region and proprietary statements
may also be included.

Components

This section describes the core RTL configuration file components.

Version Statement

The version statement identifies the version of the core RTL configuration file
format. The version string consists of major and minor version numbers
separated by a period. The current version of the file is 4.5.

lcon Statement
This statement specifies the icon to display on a core. The syntax is:

icon <file_name>

file_name is the name of the graphic file, without any directory names. Store
the file in the design directory of the core. For example:

icon "myCore.ppm"

The supported graphic formats are GIF, PPM, and PGM. Graphics should be
no larger than 80x80 pixels. Since the text used for the core is white, use a
dark background for your icon, otherwise it will be difficult to read.

Core_id Statement

The core_id statement provides identifying information to the tools about the
core. This information is required. Syntax of the core_id statement is:

core_id <vendor_code> <core_code> <revision_code> [<description>]

where:

vendor_code An OCP-1P-assigned vendor code that uniquely identifies the core devel oper.
OCP-IP maintains aregistry of assigned vendor codes. The allowed range is
0x0000 - OxFFFF. Use 0x5555 to denote an anonymous vendor. For alist of codes
check www.ocpip.org.

Core RTL Configuration File 131

OCP-IP Confidential

core code A developer-assigned core code that (in combination with the vendor code)
uniquely identifies the core. OCP-IP provides suggested values for common
cores. See* Defined Core Code Values® on page 131. Theallowed rangeis 0x000
- OXFFF.

revision_code A developer-assigned revision code that can provide core revision information.
The allowed range is Ox0-OxF.

description An optional Tcl string that provides a short description of the core.

Defined Core Code Values

0x000 - O0x7FF: Pre-defined
0x000 - OxOFF: Memory
Sum values from following choices:
ROM:
0x0: None
0x1: ROM/EPROM
0x2: Flash (writable)
0x3: Reserved
SRAM:
0x0: None
0x4: Non-pipelined SRAM
0x8: Pipelined SRAM
0xC: Reserved
DRAM:
0x00: None
0x10: DRAM (trad., page mode, EDO, etc.)
0x20: SDRAM (all flavors)
0x30: RDRAM (all flavors)
0x40: Several
0x50: Reserved
0x60: Reserved
0x70: Reserved
Built-in DMA:
0x00: No
0x80: Yes
Values from 0x000 - O0xOFF are defined/reserved
Example: Memory controller supporting only SDRAM & Flash
would have <cc> = 0x2 + 0x20 = 0x022

0x100 - Ox1FF: General-purpose processors
Sum values from following choices plus offset 0x100:

Word size:
0x0: 8-bit
0x1: 16-bit
0x2: 32-bit
0x3: 64-bit

0x4 - 0x7: Reserved
Embedded cache:
0x0: No cache

132 Open Core Protocol Specification

0x8: Cache (Instruction, Data, combined, or both)

Processor Type:

0x00: CPU

0x10: DSP

0x20: Hybrid

0x30: Reserved
Only values from 0x100 - 0x13F are defined/reserved
Example: 32-bit CPU with embedded cache

would have <cc> = 0x100 + 0x2 + 0x8 + 0x00 = 0x10A

0x200 - O0x2FF: Bridges
Sum values from following choices plus offset 0x200:
Domain:
0x00 - 0x7F: Computing
0x00 - 0x3F: PC's
0x00: ISA (inc. EISA)
0x01 - 0x0F: Reserved
0x10: PCI (33MHz/32b)
0x11: PCI (66MHz/32b)
0x12: PCI (33MHz/64Db)
0x13: PCI (66MHz/64Db)
0x14 - 0x1F: AGP, etc.
0x40 - 0x7F: Reserved
0x80 - 0xBF: Telecom
0xA0 - OxAF: ATM
0xAQ0: Utopia Level 1
0xAl: Utopia Level 2

0xCO0 - OxFF: Datacom
0x300 - 0x3FF: Reserved

0x400 - Ox5FF: Other processors

(enumerate types: MPEG audio, MPEG video, 2D Graphics,
3D Graphics, packet, cell, QAM, Vitterbi, Huffman,
QPSK, etc.)

0x600 - O0x7FF: I/O

(enumerate types: Serial UART, Parallel, keyboard, mouse,
gameport, USB, 1394, Ethernet 10/100/1000, ATM PHY,
NTSC, audio in/out, A/D, D/A, I2C, PCI, AGP, ISA,

etc.)

0x800 - OxFFF: Vendor-defined
(explicitly left up to vendor)

OCP-IP Confidential

Core RTL Configuration File 133

OCP-IP Confidential

Inferface Statement

The interface statement defines and names the interfaces of a core. The
interface name is required so that cores with multiple interfaces can specify
to which interface a particular connection should be made. Syntax for the
interface statement is:

interface <interface_name> bundle <bundle name> [revision
<revision_string>]
[{<interface_body>*}]

Parameters lacking a default must be specified using a param statement. For
a list of the required parameters, see Section 4.9.6 on page 67. All other
interface body statements are optional

The <bundle_name> must be a defined bundle such as ocp or ocp2 or a
bundle specified in an interface configuration file as described on page 123.
The optional <revision_string> must match that of the referenced bundle.
Different interfaces can refer to different revisions of the same bundle. The
pre-defined ocp, ocp2, and ocp3 bundles use the default revision_string to
refer to the 1.0, 2.0, or 3.0 versions of the OCP Specification, respectively. For
ocp2 bundles, set revision_string to 2 to refer to the 2.2 version of the OCP
Specification.

In the following example, an interface named xyz is defined as an OCP 3.0
bundle. The quotation marks around xyz are not required but help to
distinguish the format.

interface "xyz" bundle ocp3 revision 0

<interface_body>:
| interface_type <type_name>
| port <port_name> net <net_name>
| reference_port <interface name>.<port_name> net <net_name>
| prefix <name>
| param <name> <value> [{(<attribute> <value>)*}]
| subnet <net_name> <bit_range_list> <subnet_name>
| location (n|e|w|s|) <number>
| proprietary <vendor_code> <organization_ name>
{<proprietary_ statements>}

Ports on a core interface may have names that are different than the nets
defined in the bundle type for the interface. In this case, each port in the
interface must be mapped to the net in the bundle with which it is associated.
Mapping links the module port <prefix><port_name> with the bundle
<net_name>.

The default rules for mapping are that the port_ name is the same as the
net_name and the prefix is the name of the interface. These rules can be
overridden using the Port and Prefix statements.

134 Open Core Protocol Specification

OCP-IP Confidential

Interface_type Statement
The interface_type statement defines characteristics of the bundle. Typically,

the different types specify whether the core drives or receives a particular
signal within the bundle. Syntax for the interface_type statement is:

interface_type <type_name>

The type_name must be a type defined in the bundle definition. If the bundle
is OCP, the allowed types are: master, system_master, slave, system_slave,
and monitor as described in Table 18 on page 35. To define a type, specify it
in the interface configuration file (described on page 123).

Port Statement

Use the port statement to map a single port corresponding to a signal that is
defined in the bundle. Syntax for the port statement is:

port <port_name> net <net_name>

The module port named <prefix><port name> implements the <net_name>
function of the bundle. The legal net_ name values are defined in the bundle
definition. For OCP bundles, the net names are defined in Section 3 on
page 13.

Reference_port Statement

The reference_port statement re-directs a net to another bundle. Syntax for
the port statement is:

reference_port <interface_name>.<port_name> net <net_name>

The interface (in which the reference_port is declared) does not have the
reference port and the bundle does not have the reference net. The
reference_port statement declares that the net is internally connected to the
given port of the referenced interface. For example, consider the following two
interfaces:

interface tp bundle ocp {
reference_port ip.Clk_i net Clk
reference_port ip.SReset_ni net MReset_n
reference_port ip.EnableClk_i net EnableClk
port Control_i net Control
port MCmd_i net MCmd

interface ip bundle ocp {
port Clk_i net Clk
port SReset_ni net SReset_n
port EnableClk_i net EnableClk
port Control_i net Control
port MCmd_o net MCmd

Core RTL Configuration File 135

OCP-IP Confidential

Figure 14 Reference Port

internal use of signals
A A A A y

L
st
CI
3 @® port
(&)
5 S (O reference port
OCP bundle OCP bundle

Figure 14 illustrates the operation of a reference port. In the interface tp, no
ports exist for bundle signals Clk, EnableClk, and MReset_n. Neither do the
bundle signals themselves exist. Instead, they reference the corresponding
ports in the ip interface and nets in the bundle connected to that interface.
The internal signals in the tp interface that would have been connected to the
Clk, EnableClk, and MReset_n signals of the OCP bundle connected to the tp
interface are instead connected to the referenced ports in the ip interface.

Prefix Command

The prefix command applies to all ports in an interface. It supplies a string
that serves as the prefix for all core port names in the interface. Syntax for the
prefix command is:

prefix <name>

For example, the statement prefix external_ specifies that the names for all
ports in the interface are of the form external_*.

If the prefix command is omitted, the interface name will be inserted as the
default prefix. To omit the prefix from the port name, specify it as an empty
string, that is prefix "".

Configurable Interfaces Parameters

For configurable interfaces, parameters specify configurations. The specific
parameters for OCP are described in Chapters 3 and 4 and summarized in
Table 29 on page 68. The syntax for setting a parameter is:

param <name> <value> [{(<attribute> <value>)*}]
<value>: <number>|<name>
<attribute>: tie_off|width

If the parameter is used to configure a signal, the attribute list can be used to
attach additional values to that signal. The supported attributes are the tie-
off (if the signal is configured out of the interface) and the signal width (if the

136 Open Core Protocol Specification

OCP-IP Confidential

signal is configured into the interface). Specifying the signal width using an
attribute attached to the signal parameter is equivalent to using the
corresponding signal width parameter but the attribute syntax is preferred.
The width of the signals MData, SData, MByteEn, and MDataByteEn are
derived from the single data_wdth parameter, so cannot have their width
specified using an attribute. For example, an OCP might be configured to
include an interrupt signal as follows.

param interrupt 1

The following example shows the MBurstLength field tied off to a constant
value of 4.

param burstlength 0 {tie_off 4}

The following code shows two equivalent ways of setting the address width to
16 bits though the second method is preferred.

param addr_wdth 16

param addr 1 {width 16}

Subnet Statement

The subnet statement assigns names to bits or contiguous bit-fields within a
net. Syntax for the subnet statement is:

subnet <net_name> <bit_range_list> <subnet_name>
<bit_range_list>: <bit_range>[,<bit_range>]*
<bit_range>: <bit_number>[:<bit_number>]

The subnet_name is assigned to the bit_range within the given net_name.
Bit_range can be either a single bit or a range. Subnet_name is a Tcl string.

For example bit 3 of the MReqInfo net may be assigned the name “cacheable”
as follows:

subnet MReqgInfo 3 cacheable

Location Statement

The location statement provides a way for the core to indicate where to place
this interface when a schematic symbol for the core is drawn. The location is
specified as a compass direction of north(n), south(s), east(e), west(w) and a
number. The number indicates a percentage from the top or left edge of the
block. Syntax for the location statement is:

location (n|e|w|s) <number>

To place an interface on the bottom (south-side) in the middle (50% from the
left edge) of the block, for example, use this definition:

location s 50

Core RTL Configuration File 137

OCP-IP Confidential

Address Region Statement

The address region statement specifies address regions within the complete
address space of a core. It allows you to give a symbolic name to a region, and
to specify its base, size, and behavior.

addr_region <name> {<addr_region_body>*}
where:

<addr_region_body>: addr_base <integer> | addr_size <integer>
| addr_space <integer>
| proprietary <vendor_code> <organization_ name>
{<proprietary_ statements>}

e The addr_base statement specifies the base address of the region being
defined and is specified as an integer.

e The addr_size statement similarly specifies the size of the region.

e The addr_space statement specifies to which OCP address space the
region belongs. If the addr_space statement is omitted, the region belongs
to all address spaces.

Proprietary Statement

The proprietary statement enables proprietary extensions of the core RTL
configuration file syntax. Standard parsers must be able to ignore the
extensions, while proprietary parsers can extract additional information
about the core. Syntax for the proprietary statement is:

proprietary <vendor_code> <organization_name>
{<proprietary_statements>}

The vendor_code uniquely identifies the vendor associated with the
proprietary extensions and is described in more detail on page 130.

The organization_name specifies the name of the organization that specified
the extensions. Any number of proprietary statements can be included
between the braces but must follow legal Tcl syntax.

The proprietary statement can be included at multiple levels of the syntax
hierarchy, allowing it to use scoping to imply context. If multiple proprietary
statements are included in a single scope, the parser must process these in
an additive fashion.

138 Open Core Protocol Specification

8.3 Sample RTL Configuration File

The format for a core RTL configuration file for a core is shown in Example 1.

Example 1 Sample flashctrl_rtl.conf File

define the module
version 4.5

module flashctrl {
core_id 0xBBBB 0x001 0x1 “Flash/Rom Controller”

Use the Vista icon
icon “vista.ppm”

addr_region “FLASHCTRLO” {
addr_base 0x0

addr_size 0x100000

}

one of the interfaces is an OCP slave using the pre-defined ocp2 bundle
Revision is "1", indicating compliance with OCP 2.1
interface tp bundle ocp2 revision 1 {

this is a slave type ocp interface
interface_type slave

this OCP is a basic interface with byteen support plus a named SFlag
and MReset_n

param mreset 1

param sreset 0

param byteen 1

param sflag 1 {width 1}

param addr 1 {width 32}

param mdata 1 {width 64}

param sdata 1 {width 64}

prefix tp

since the signal names do not exactly match the signal
names within the bundle, they must be explicitly linked
port Reset_ni net MReset_n

port Clk_i net Clk

port TMCmd_i net MCmd

port TMAddr_i net MAddr

port TMByteEn_i net MByteEn

port TMData_i net MData

port TCCmdAccept_o net SCmdAccept

port TCResp_o net SResp

port TCData_o net SData

port TCError_o net SFlag

OCP-IP Confidential

Core RTL Configuration File 139

name SFlag[0] access_error
subnet SFlag 0 access_error

stick this interface in the middle of the top of the module
location n 50

} # close interface tp defininition

The other interface is to the flash device defined in an interface file
Define the interface for the Flash control
interface emem bundle flash {

the type indicates direction and drive of the control signals
interface_type controller

since this module has direction indication on some of the signals
('_o','_b'") and is missing assertion level indicators '_n' on

some of the signals, the names must again be directly linked to

the signal names within the bundle

port Addr_o net addr

port Data_b net data

port OE net oe_n
port WE net we_n
port RP net rp_n
port WP net wp_n

all of the signals on this port have the prefix 'emem '
prefix "emem_"

stick this interface in the middle of the bottom of the module
location s 50

} # close interface emem defininition
} # close module definition

The flash bundle is defined in the following interface configuration file. See
Section 7 on page 123 for the syntax definition of the interface configuration
file.

bundle flash {
#types of flash interfaces
#controller: flash controller; flash: flash device itself.
interface_types controller flash
net addr {
#Address to the Flash device
direction output input
width 19

OCP-IP Confidential

140 Open Core Protocol Specification

net data {
#Read or Write Data
direction inout inout
width 16

}

net oe n {
Output Enable, active low.
direction output input

}

net we_n {
Write Enable, active low.
direction output input

}

net rp_n {
Reset, active low.
direction output input

}

net wp_n {
Write protect bit, Active low.
direction output input

OCP-IP Confidential

9

Core Timing

OCP-IP Confidential

To connect two entities together, allowing communication over an OCP
interface, the protocols, signals, and pin-level timing must be compatible.
This chapter describes how to define interface timing for a core. This process
can be applied to OCP and non-OCP interfaces.

Use the core synthesis configuration file to set timing constraints for ports in
the core. The file consists of any of the constraint sections: port, max delay,
and false path. If the core has additional non-OCP clocks, the file should
contain their definitions.

When implementing IP cores in a technology independent manner it is
difficult to specify only one timing number for the interface signals, since
timing is dependent on technology, library and design tools. The methodology
specified in this chapter allows the timing of interface signals to be specified
in a technology independent way.

To make your core description technology independent use the technology
variables defined in the Core Preparation Guide. The technology variables
range from describing the default setup and clock-to-output times for a port
to defining a high drive cell in the library.

142 Open Core Protocol Specification

9.1

9.1.1

Timing Parameters

There is a set of minimum timing parameters that must be specified for a core
interface. Additional optional parameters supply more information to help the
system designer integrate the core. Hold-time parameters allow hold time
checking. Physical-design parameters provide details on the assumptions
used for deriving pin-level timing.

Minimum Parameters

At a minimum, the timing of an OCP interface is specified in terms of two
parameters:

e setuptime is the latest time an input signal is allowed to change before
the rising edge of the OCP clock.

e c2gtimeis the latest time an output signal is guaranteed to become stable
after the rising edge of the OCP clock.

Figure 15 shows the definition of setuptime and c2gtime. See
Section 9.2.5.1 on page 149 for a description of these parameters.

Figure 15 OCP Timing Parameters

c2qgtime setuptime

1 clock cycle

9.1.2 Hold-time Parameters

OCP-IP Confidential

Hold-time parameters are needed to allow the system integrator to check hold
time requirements. On the output side, c2gtimemin specifies the minimum
time for a signal to propagate from a flip-flop to the given output pin. On the
input side, holdtime specifies the minimum time for a signal to propagate
from the input pin to a flip-flop.

Core Timing 143

9.1.3 Technology Variables

To give meaning to the timing values, timing requirements on input and
output pins must be accompanied by information on the assumed
environment for which these numbers are determined. This information also
adds detail on the expected connection of the pin.

For an input signal, the parameter drivingcellpin indicates the cell library

name for a cell representative of the strength of the driver that needs to be
used to drive the signal. This is shown in Figure 16.

Figure 16 Driver Strength

Wy

drivingcellpin core

For an output signal, the variable 1oadcellpin indicates the input load of the
gate that the signal is expected to drive. The variable 1oads indicates how
many loadcellpins the signal is expected to drive. Additionally, information on
the capacitive load of the wire must be included. There are two options. Either
the variable wireloaddelay can be specified, as shown in Figure 17. Or, the
combination wireloadcapacitance/wireloadresistance must be
specified, as shown in Figure 18.

Figure 17 Variable Loads - wireloaddelay
Ioljdcellpin
»)
@ > > > loads

wireloaddelay
_

For instructions on calculating a delay, refer to the Synopsys Design Compiler
Reference.

OCP-IP Confidential

144 Open Core Protocol Specification

Figure

18

Variable Loads - wireloadresistance/wireloadcapacitance

wireloadresistance

loadcellpin

v
4’\

logic YA

wireloadcapacitance

9.1.4 Connecting Two OCP Cores

Figure 19 shows the timing model for interconnecting two OCP compliant

cores.

>

»

> loads

The sum of setuptime, c2gtime and wire delay must be less than the clock
period or cycle time minus the clock-skew. Similarly, the minimum clock-

cycle for two cores to interoperate is determined by the maximum of the sum
of c2gtime, setuptime, wire delay and clock-skew over all interface signals.

The wireload delay is defined by either the variable wireloaddelay or the set
wireloadcapacitance/wireloadresistance.

Figure 19 Connecting Two OCP Compliant Cores

drivingcellpin

loads * loadcellpin

<

logic

- / wireloc\:iilesis’ronce 9
wireloadcapacitance
c2gtime wireloaddelay %////%%////% sofuptime

>

OCP-IP Confidential

1 clock cycle

Core Timing 145

9.1.4.1 Max Delay

In addition to the setup and c2gtime paths for a core, there may also be
combinational paths between input and output ports. Use maxdelay to
specify the timing for these paths.

Figure 20 Max Delay Timing

input é output

max delay

9.1.4.2 False Paths

It is possible to identify a path between two ports as being logically impossible.
Such paths can be specified using the falsepath constraint syntax.

For instructions on specifying the core’s timing parameters, see Section 9.2.7
on page 154.

OCP-IP Confidential

146 Open Core Protocol Specification

9.2 Core Synthesis Configuration File

9.2.1

OCP-IP Confidential

The core synthesis configuration file contains the following sections:

Version
Specifies the current version of the synthesis configuration file format.
The current version is 1.3.

Clock
Describes clocks brought into the core.

Area
Defines the area in gates of the core.

Port
Defines the timing of IP block ports.

Max Delay
Specifies the delay between two ports on a combinational path.

False Path
Specifies that a path between input and output ports is logically
impossible.

Syntax Conventions

Observe the following syntax conventions:

e Enclose all expr statements within braces { }, to differentiate between

expressions that are to be evaluated while the file is being parsed (without
braces) and those that are to be evaluated during synthesis constraint file

generation (with braces).

e Although not required by Tcl, enclose strings within quotation marks
to show that they are different than keywords.

e Specify keywords using lower case.

Parameter values are specified using Tcl syntax. Expressions can use any of

the technology or environment variables, and any of the following variables:

clockperiod
This variable should only be used in calculations of timing values for

ports. When evaluating expressions that use $clockperiod, the program
will determine which clock the port is relative to, determine its period (in

nanoseconds), and apply that value to the equation. For example:

port "in" {
setuptime {[expr S$clockperiod * .51}

}

e1s

Core Timing 147

OCP-IP Confidential

rootclockperiod

This variable is set to the period of the main system clock, usually referred
to as the root clock. It is typically used when a value needs to be a multiple
of the root clock, such as for non-OCP clocks. For example:

clock "myClock" {
period {[expr Srootclockperiod * 4]}

}

The design_syn.conf file can also use conditional settings of the parameters

in the design as outlined by the following arrays. These variables are only
used at the time the file is read into the tools.

param

This array is indexed by the configuration parameters that can be found
on a particular instance. Only use param for core_syn.conf files since it is
only applicable to the instance being processed. For example:

if { Sparam("dma_fd") == 1 } {
port "T12_ipReset_no" {
c2gtime {[expr Sclockperiod * 0.7]}
}

}

chipparam
This array is indexed by the configuration parameters that are defined at
the chip or design level. These variables can be used in both the

design_syn.conf and core_syn.conf files as they are more global in nature
than those specified by param. For example:

if { S$chipparam("full") == 1 } {
instance "bigcore" {
port "in" {
setuptime {[expr $clockperiod * 0.7]}

}

interfaceparam

This array is indexed by the interface name and the configuration param-
eters that are on an interface. It should only be used for core_syn.conf files
since it is only applicable to the interfaces on the instance being pro-
cessed. In the following example the interface name is ip.

if { Sinterfaceparam("ip_respaccept") == 1 } {
port "ipMRespAccept_o" {
c2gtime {[expr Sclockperiod * 21/25]}
}

148 Open Core Protocol Specification

9.2.2

9.23

9.24

OCP-IP Confidential

Version Section

The version of the core synthesis configuration file is required. Specify the
version with the version command, for example: version 1.3

Clock Section

If you have non-OCP clocks for an IP block or want to specify the
worstcasedelay of any clock (including OCP clocks) used in the core, specify
the names of the clocks in the core synthesis configuration file. Use the
following syntax to specify the name of the clock and its worstcasedelay:

clock <clockName> {
worstcasedelay <delay Value>

}

clockName refers to the name of the port that brings the clock into the core
for the core synthesis configuration file. For example:

clock “myClock”

worstcasedelay
The worst case delay value is the longest path through the core or
instance for a particular clock. The value is used to check that the core
can meet the timing requirements of the current design. To help make this
value more portable, you may want to use the technology variable
gatedelay. For example:

clock "myClock" {
worstcasedelay {[10.5 * $gatedelayl]}
}

clock "otherClock" {
worstcasedelay 5

}

Constant values are specified in nanoseconds. For consistency, use
expressions that can be interpreted in nanoseconds.

Area Section

The area is the size in gates of the core or instance. By specifying the size in
gates the area can be calculated based on the size of a typical two input nand
gate in a particular synthesis library. For example:

area {[expr 20500 / Sgatesize]}
area 5000

Constant values are specified in two input nand gate equivalents. For
consistency, use expression that can be interpreted in gates.

Core Timing 149

9.2.5 Port Constraints Section

9.2.5.1

OCP-IP Confidential

Use the port constraints section to specify the timing parameters. Input port
information that can be specified includes the setup time, related clock (non-
OCP ports), and driving cell. For output ports, the clock to output times,

related clock (non-OCP ports), and the loading information must be supplied.

Port Constraint Keywords

The keywords that can be used to specify information about port constraints
are:

c2qtime
The c2q (clock to q or clock to output) time is the longest path using worst
case timing from a starting point in the core (register or input port) to the
output port. This includes the c2gtime of the register. To maintain port-
ability, most cores specify this as a percentage of the fastest clock period
used while synthesizing the core. For example:

c2gtime {[expr Stimescale * 3500]}
c2gtime {[expr Sclockperiod * 0.25]}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

c2qtimemin
The c2q (clock to q or clock to output) time min is the shortest path using
best case timing from a starting point in the core (register or input port)
to the output port. This includes the c2gtime of the register. Most cores
use the default from the technology section, defaultc2gtimemin. For ex-
ample:

c2gtimemin {[expr Stimescale * 100]}
c2gtimemin {$defaultc2gtimemin}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

clockname
This is an optional field for all OCP ports and is a string specifying the
associated clock portname. For input ports, input delays use this clock as
the reference clock. For output ports, output delays use this clock as the
reference clock. For example:

clockname “myClock”

drivingcellpin
This variable describes which cell in the synthesis library is expected to
be driving the input. To maintain portability set this variable to use one of
the technology values of high/medium/lowdrivegatepin.

Values are a string that specifies the logical name of the synthesis library,
the cell from the library, and the pin that will be driving an input for the
core. The pin is optional. For example:

150 Open Core Protocol Specification

OCP-IP Confidential

drivingcellpin {$mediumdrivegatepin}
drivingcellpin "pt25u/nand2/0"

holdtime

The hold time is the shortest path using best case timing from an input
port to any endpoint in the core. Most cores use the default from the tech-
nology section, defaultholdtime. For example:

holdtime {[expr S$timescale * 100]}
holdtime {$defaultholdtime}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

loadcellpin

The name of the load library/cell/pin that this output port is expected to
drive. The value is specified to the synthesis tool as the gate to use (along
with the number of loads) in its load calculations for output ports of a
module. For portability use the default.

Values are a string that specifies the logical name of the synthesis library,
the cell from the library, and the pin that the load calculation is derived
from. The pin is optional. For example:

loadcellpin "pt25u/nand2/I1"
loadcellpin {$defaultloadcellpin}

loads

The number of loadcellpins that this output port is expected to drive. The
value is communicated to the synthesis tool as the number of loads to use
in load calculations for output ports of a module. The typical setting for
this is the technology value of defaultloads. Values are an expression
that evaluates to an integer. For example:

loads 5
loads {$defaultloads}

maxfanout

This keyword limits the fanout of an input port to a specified number of
fanouts. To maintain portability set this variable in terms of the

technology variable defaultfanoutload.Constant values are specified
in library units. For example:

maxfanout {[expr S$defaultfanoutload * 1]}

setuptime

The longest path using worst case timing from an input port to any end-
point in the core. To maintain portability, most cores specify this as a per-

centage of the fastest clock period used during synthesis of the core. For
example:

setuptime {[expr Stimescale * 2500]}
setuptime {[expr Sclockperiod * 0.25]}

Core Timing 151

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

wireloaddelay
Replaces capacitance/resistance as a way to specify expected delays
caused by the interconnect. To maintain portability set this variable to use
a technology value of long/medium/shortnetdelay.

The resulting values get added to the worst case clock-to-output times of
the ports to anticipate net delays of connections to these ports. To improve
the accuracy of the delay calculation cores should use the resistance and
capacitance settings.

You cannot specify both wireloaddelay and wireloadresistance/ca-
pacitance for the same port. For example:

wireloaddelay {[expr $clockperiod * .25]}
wireloaddelay {$mediumnetdelay}

Constant values are specified in nanoseconds. For consistency, use ex-
pressions that can be interpreted in nanoseconds.

wireloadresistance

wireloadcapacitance
Specify expected loading and resistance caused by the interconnect. If
available, specify both resistance and capacitance. To maintain portability
set this variable to use one of the technology values of long/medium/
shortnetrcresistance/capacitance.

If these constraints are specified they show up as additional loads and re-
sistances on output ports of a module. You cannot use both wireloaddelay
and wireloadresistance/capacitance for the same port.

Specify constant values as expressions that result in kOhms for resis-
tance and picofarads (pf) for capacitance. For example:

wireloadresistance {[expr Sresistancescale * .09]}
wireloadcapacitance {[expr S$Scapacitancescale * .12]}
wireloadresistance {Smediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}

9.2.5.2 Input Port Syntax

OCP-IP Confidential

For input and inout ports (inout ports have both an input and an output
definition) use the following syntax:

port <portName> {
clockname <clockName>
drivingcellpin <drivingCellName>
setuptime <Value>
holdtime <Value>
maxfanout <Value>

152 Open Core Protocol Specification

9.25.3

OCP-IP Confidential

Examples
In the following example, the clock is not specified since this is an OCP port

and is known to be controlled by the OCP clock. If a clock were specified as
something other than the OCP clock, an error would result.

port “MCmd_i” {
drivingcellpin {$mediumdrivegatepin}
setuptime {[expr Sclockperiod * 0.2]}

In the following example, the setup time is required to be 2ns. Time constants
are assumed to be in nanoseconds. Use the timescale variable to convert
library units to nanoseconds.

port “MAddr_i” {
drivingcellpin {$Smediumdrivegatepin}
setuptime 2

}

The following example shows how to associate a non OCP clock to a port. The
example uses maxfanout to limit the fanout of myInPort to 1. If the logic for
myInPort required it to fanout to more than one connection, the synthesis tool
would add a buffer to satisfy the maxfanout requirement.

port “myInPort” ({
clockname “myClock”
drivingcellpin {$Smediumdrivegatepin}
setuptime 2
maxfanout {[expr S$defaultfanoutload * 1]}

Output Port Syntax

For output and inout ports (inout ports have both an input and an output
definition) use the following syntax:

port <portName> {
clockname <clockName>
loadcellpin <loadCellPinName>
loads <Value>
wireloadresistance <Value>
wireloadcapacitance <Value>
wireloaddelay <Value>
c2gtime <Value>
c2gtimemin <Value>

You cannot specify both wireloaddelay and wireloadresistance/
capacitance for the same port.

Core Timing 153

OCP-IP Confidential

Examples

In the following example, the clock is not specified since this is an OCP port
and is known to be controlled by the OCP clock.

port “SCmdaccept_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {Smediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2gtime {[expr Sclockperiod * 0.2]}

}

In the following example, the clock to output time is required to be 2 ns. Time
constants are assumed to be in nanoseconds. Use the timescale variable to
convert library units to nanoseconds.

port “SResp_o”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {Smediumnetrcresistance}
wireloadcapacitance {$mediumnetrccapacitance}
c2gtime 2

}

The following example shows how to associate a clock to an output port.

port “myQOutPort”
clockname “myClock”
loadcellpin {$defaultloadcellpin}
loads 10
wireloaddelay {$longnetdelay}
c2gtime {[expr Sclockperiod * .2]}

INOut Port Example

port “Signal_io”
drivingcellpin {$mediumdrivegatepin}
setuptime {[expr $clockperiod * 0.2]}

}

port “Signal_io”
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloadresistance {Smediumnetrcresistance}
wireloadresistance {$Smediumnetrccapacitance}
c2gtime {[expr Sclockperiod * 0.2]}

154 Open Core Protocol Specification

9.2.6

maxdelay
delay
delay

9.2.7

OCP-IP Confidential

Max Delay Constraints

Using the max delay constraints you can specify the delay between two ports
on a combinational path. This is useful when synthesizing two communi-
cating OCP interfaces. The syntax for maxdelay is:

maxdelay {
delay <delayValue> fromport <portName> toport <portName>

}

where: <delayValue> can be a constant or a Tcl expression.

In the following example, a maxdelay of 3 ns is specified for the combinational
path between myInPortl and myOutPortl. A maxdelay of 50% of the
clockperiod is specified for the path between myInPort2 and myOutPort2. The
braces around the expression delay evaluation until the expression is used by
the mapping program.

{
3 fromport “myInPortl” toport “myOutPortl
{[expr S$clockperiod *.5]} fromport “myInPort2” toport “myOutPort2”

False Path Constraints

Using the false path constraints you can specify that a path between certain
input and output ports is logically impossible.

The syntax for falsepath is:

falsepath{
fromport <portName> toport <portName>

}
In the following example, a falsepath is set up between myInPortl and
myOutPortl as well as myIlnPort2 and myOutPort2. This tells the synthesis

tool that the path is not logically possible and so it will not try to optimize this
path to meet timing.

falsepath {
fromport “myInPortl” toport “myOutPortl”
fromport “myInPort2” toport “myOutPort2”

Core Timing 155

9.2.8 Sample Core Synthesis Configuration File

The following example shows a complete core synthesis configuration file.

version 1.3
port “Reset_ni” {
drivingcellpin {$mediumgatedrivepin}
setuptime {[expr S$clockperiod * .5]}
}
port “MCmd_i” {
drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .9]}
}
port “MAddr_i” {
drivingcellpin {$Smediumgatedrivepin}
setuptime {[expr S$clockperiod * .51}
}
port “MwWidth_i” {
drivingcellpin {$Smediumgatedrivepin}
setuptime {[expr Sclockperiod * .51}
}
port “MData_i” {
drivingcellpin {$mediumgatedrivepin}
setuptime {[expr $clockperiod * .5]}
}
port “SCmdAccept_o” {
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {S$mediumnetdelay}
c2gtime {[expr Sclockperiod * .9]}
}
port “SResp_o” {
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {S$mediumnetdelay}
c2gtime {[expr Sclockperiod * .8]}
}
port “Shata_o” {
loadcellpin {$defaultloadcellpin}
loads {$defaultloads}
wireloaddelay {$mediumnetdelay}
c2gtime {[expr Sclockperiod * .8]}
}
maxdelay {
delay 2 fromport “MData_i” toport
“SResp_o”
}
falsepath {
fromport “MData_i” toport “SData_o”

OCP-IP Confidential

Part Il Guidelines

10

Timing Diagrams

10.1

OCP-IP Confidential

The timing diagrams within this chapter look at signals at strategic points and
are not intended to provide full explanations but rather, highlight specific
areas of interest. The diagrams are provided solely as examples. For related
information about phases, see Section 4.3 on page 40.

Most of the timing diagrams in this chapter are based upon simple OCP
clocking, where the OCP clock is completely determined by the Clk signal. A
few diagrams are repeated to show the impact of the EnableClk signal. Most
fields are unspecified whenever their corresponding phase is not asserted.
This is indicated by the striped pattern in the waveforms. For example, when
MCmd is IDLE the request phase is not asserted, so the values of MAddr,
MData, and SCmdAccept are unspecified.

Subscripts on labels in the timing diagrams denote transfer numbers that can
be helpful in tracking a transfer across protocol phases.

For a description of timing diagram mnemonics, see Tables 2 on page 15 and
3 on page 16.

Simple Write and Read Transfer

Figure 21 illustrates a simple write and a read transfer on a basic OCP
interface. This diagram shows a write with no response enabled on the write,
which is typical behavior for a synchronous SRAM or a register bank.

160 Open Core Protocol Specification

Figure 21 Simple Write and Read Transfer

Clk
MCmd
g @ MAddr
S ©
O c
F o MData
SCmdAccept
()
2 8 SResp NULL DVA, >< NULL
Q @
& c
o Qo
04 SData
Sequence

OCP-IP Confidential

A.

The master starts a request phase on clock 1 by switching the MCmd field
from IDLE to WR. At the same time, it presents a valid address (Al) on
MAddr and valid data (D1) on MData. The slave asserts SCmdAccept in
the same cycle, making this a O-latency transfer.

The slave captures the values from MAddr and MData and uses them
internally to perform the write. Since SCmdAccept is asserted, the request
phase ends.

The master starts a read request by driving RD on MCmd. At the same
time, it presents a valid address on MAddr. The slave asserts SCmdAccept
in the same cycle for a request accept latency of O.

The slave captures the value from MAddr and uses it internally to
determine what data to present. The slave starts the response phase by
switching SResp from NULL to DVA. The slave also drives the selected
data on SData. Since SCmdAccept is asserted, the request phase ends.

The master recognizes that SResp indicates data valid and captures the
read data from SData, completing the response phase. This transfer has
a request-to-response latency of 1.

Timing Diagrams 161

10.2 Request Handshake

Figure 22 illustrates the basic flow-control mechanism for the request phase
using SCmdAccept. There are three writes with no responses enabled, each
with a different request accept latency.

Figure 22 Request Handshake

Ck
MCmd XIME

S ®©
o c
Fo MData %

SCmdAccept %
© -
0] @ SResp NULL NULL
8 &
oo
o L

OCP-IP Confidential

A B C D

F

Sequence

A.

The master starts a write request by driving WR on MCmd and valid
address and data on MAddr and MData, respectively. The slave asserts
SCmdAccept in the same cycle, for a request accept latency of 0.

The master starts a new transfer in the next cycle. The slave captures the
write address and data. It deasserts SCmdAccept, indicating that it is not
yet ready for a new request.

Recognizing that SCmdAccept is not asserted, the master holds all
request phase signals (MCmd, MAddr, and MData). The slave asserts
SCmdAccept in the next cycle, for a request accept latency of 1.

D. The slave captures the write address and data.

E. After 1 idle cycle, the master starts a new write request. The slave

deasserts SCmdAccept.

Since SCmdAccept is asserted, the request phase ends. SCmdAccept was
low for 2 cycles, so the request accept latency for this transfer is 2. The
slave captures the write address and data.

162 Open Core Protocol Specification

10.3 Request Handshake and Separate
Response

Figure 23 illustrates a single read transfer in which a slave introduces delays
in the request and response phases. The request accept latency 2,
corresponds to the number of clock cycles that SCmdAccept was deasserted.

The request to response latency 3, corresponds to the number of clock cycles
from the end of the request phase (D) to the end of the response phase (F).

Figure 23 Request Handshake and Separate Response

Clk 4?

MCmd IDLE RD, >< IDLE

1 2 3 4 5 6 7

SResp NULL >< DVA1>< NULL

Response
Phase

Sequence

A. The master starts a request phase by issuing the RD command on the
MCmd field. At the same time, it presents a valid address on MAddr. The
slave is not ready to accept the command yet, so it deasserts SCmdAccept.

B. The master sees that SCmdAccept is not asserted, so it keeps all request
phase signals steady. The slave may be using this information for a long
decode operation, and it expects the master to hold everything steady
until it asserts SCmdAccept.

C. The slave asserts SCmdAccept. The master continues to hold the request
phase signals.

D. Since SCmdAccept is asserted, the request phase ends. The slave
captures the address, and although the request phase is complete, it is
not ready to provide the response, so it continues to drive NULL on the
SResp field. For example, the slave may be waiting for data to come back
from an off-chip memory device.

OCP-IP Confidential

Timing Diagrams 163

E. The slave is ready to present the response, so it issues DVA on the SResp

field, and drives the read data on SData.

F. The master sees the DVA response, captures the read data, and the

response phase ends.

10.4 Write with Response

Figure 24 is the same example as the waveform on page 161 but with
response on write enabled. The response is typically provided to the master in
the same cycle as SCmdAccept, but could be delayed (if required to perform
an error check for instance). On the first write transaction, the slave uses a
default accept scheme, resulting in a O-wait state write transaction. Using
fully-synchronous handshake, this condition is only possible when the slave’s
ability to accept a command depends solely on its internal state: any
command issued by the master can be accepted. Same-cycle SCmdAccept
could also be achieved using combinational logic.

o ‘ 1 2 3 4 5 ‘ i ‘ 7 ‘ 8 ‘
. Momd e >< WR, >< WR, >< IDLE WRs
g& wow 3 . .
% % - SResp >< NULL >< DVA >< NULL

OCP-IP Confidential

A B C D E F G

Sequence

A. The master starts a write request by driving WR on MCmd and valid
address and data on MAddr and MData, respectively. The slave having
already asserted SCmdAccept for a request accept latency of O, drives DVA
on SResp to indicate a successful transaction.

164 Open Core Protocol Specification

10.5

. The master starts a new transfer in the next cycle. The slave captures the

write address and data and deasserts SCmdAccept, indicating that it is
not ready for a new request.

. With SCmdAccept not asserted, the master holds all request phase

signals (MCmd, MAddr, and MData). The slave asserts SCmdAccept in the
next cycle, for a request accept latency of 1 and drives DVA on SResp to
indicate a successful transaction.

D. The slave captures the write address and data.

. After 1 idle cycle, the master starts a new write request. The slave

deasserts SCmdAccept.

Since SCmdAccept is asserted, the request phase ends. SCmdAccept was
low for 2 cycles, so the request accept latency for this transfer is 2. The
slave captures the write address and data. The slave drives DVA on SResp
to indicate a successful transaction.

. The master samples the response.

Non-Posted Write

Figure 25 repeats the previous example for a non-posted write transaction. In
this case the response must be returned to the master once the write
operation commits. There is no difference in the command acceptance, but
the response may be significantly delayed. If this scheme is used for all
posting-sensitive transactions, the result is decreased data throughput but
higher system reliability.

Figure 25 Non-posted Write

Request
Phase

Response
Phase

OCP-IP Confidential

MCmd IDLE ><WRNP1>< IDLE >< WRNP, >< IDLE

MAddr | . A
MData ////%% ’ " Do
' SCmdAccept //Ag

SResp NULL >< DVA, >< NULL >< DVA, ><

SData

Ck |]

A B C D E F G

Timing Diagrams 165

10.6

OCP-IP Confidential

Sequence

A.

The master starts a non-posted write request by driving WRNP on MCmd
and valid address and data on MAddr and MData, respectively. The slave
asserts SCmdAccept combinationally, for a request accept latency of O.

The slave drives DVA on SResp to indicate a successful first transaction.

C. The master starts a new transfer. The slave deasserts the SCmdAccept,

indicating it is not yet ready to accept a new request. The master samples
DVA on SResp and the first response phase ends.

D. The slave asserts SCmdAccept for a request accept latency of 1.

The slave captures the write address and data.

The slave drives DVA on SResp to indicate a successful second
transaction.

The master samples DVA on SResp and the second response phase ends.

Burst Write

Figure 26 illustrates a burst of four 32-bit words, incrementing precise burst
write, with optional burst framing information (MReqLast). As the burst is
precise (with no response on write), the MBurstLength signal is constant
during the whole burst. MReqLast flags the last request of the burst, and
SRespLast flags the last response of the burst. The slave may either count
requests or monitor MReqLast for the end of burst.

166 Open Core Protocol Specification

Figure 26 Burst Write

Request
Phase

OCP-IP Confidential

MBursttength | 4
MBurstSeq | mew
MBurstPrecise |
MReglast v
 SCmdAccept . v

Ck | o

MCmd IDLE >< WR; WR; WR4 >< IDLE

e |f
MAddr | oo | | o || oc W
MData | o [oo) o) o W
e S
h s |f

S\

N

IN

AN

>
(o8]
O
O
m
M

Sequence
A. The master starts the burst write by driving WR on MCmd, the first

address of the burst on MAddr, valid data on MData, a burst length of four
on MBurstLength, the burst code INCR on MBurstSeq, and asserts
MBurstPrecise. MReqLast must be deasserted until the last request in the
burst. The burst signals indicate that this is an incrementing burst of
precisely four transfers. The slave is not ready for anything, so it deasserts
SCmdAccept.

. The slave asserts SCmdAccept for a request accept latency of 1.

C. The master issues the next write in the burst. MAddr is set to the next

word-aligned address. For 32-bit words, the address is incremented by 4.
The slave captures the data and address of the first request.

. The master issues the next write in the burst, incrementing MAddr. The

slave captures the data and address of the second request.

. The master issues the final write in the burst, incrementing MAddr, and

asserting MBurstLast. The slave captures the data and address of the
third request.

The slave captures the data and address of the last request.

Timing Diagrams 167

10.7 Non-Pipelined Read

Figure 27 shows three read transfers to a slave that cannot pipeline responses
after requests. This is the typical behavior of legacy computer bus protocols
with a single WAIT or ACK signal. In each transfer, SCmdAccept is asserted

in the same cycle that SResp is DVA. Therefore, the request-to-response
latency is always 0, but the request accept latency varies from O to 2.

Figure 27 Non-Pipelined Read

Ck B

. Mcmd IDLE >< RD; >< RD; >< IDLE >< RD; >< IDLE
g % MAddr X

- SCmdAccept //% /////%’%
% % - SResp NULL ‘>< DVA, >< NULL >< DVA, >< NULL >< DVAs >< NULL

OCP-IP Confidential

A B C D E

_n
@

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The slave asserts SCmdAccept, for a request accept
latency of 0. When the slave sees the read command, it responds with DVA
on SResp and valid data on SData. (This requires a combinational path in
the slave from MCmd, and possibly other request phase fields, to SResp,
and possibly other response phase fields.)

. The master launches another read request. It also sees that SResp is DVA

and captures the read data from SData. The slave is not ready to respond
to the new request, so it deasserts SCmdAccept.

. The master sees that SCmdAccept is low and extends the request phase.

The slave is now ready to respond in the next cycle, so it simultaneously
asserts SCmdAccept and drives DVA on SResp and the selected data on
SData. The request accept latency is 1.

. Since SCmdAccept is asserted, the request phase ends. The master sees

that SResp is now DVA and captures the data.

. The master launches a third read request. The slave deasserts

SCmdAccept.

168 Open Core Protocol Specification

The slave asserts SCmdAccept after 2 cycles, so the request accept latency
is 2. It also drives DVA on SResp and the read data on SData.

. The master sees that SCmdAccept is asserted, ending the request phase.

It also sees that SResp is now DVA and captures the data.

10.8 Pipelined Request and Response

Figure 28 shows three read transfers using pipelined request and response
semantics. In each case, the request is accepted immediately, while the
response is returned in the same or a later cycle.

Figure 28 Pipelined Request and Response

OCP-IP Confidential

1 2 3 4 5 6 7
Ck

- MCmd IDLE >< RD; >< IDLE >< RD;, >< RD; >< IDLE
7o MAddr A A >< A
o8
ca MData

AﬁfaﬁdA@cept
% @ T SResp NULL >< DVA, >< NULL >< DVA, NULL >< DVAs >< NULL

2 7

gg | sow //// m e - N -

B C D E F G

Sequence
A. The master starts the first read request, driving RD on MCmd and a valid

address on MAddr. The slave asserts SCmdAccept, for a request accept
latency of 0.

. Since SCmdAccept is asserted, the request phase ends. The slave

responds to the first request with DVA on SResp and valid data on SData.

. The master launches a read request and the slave asserts SCmdAccept.

The master sees that SResp is DVA and captures the read data from
SData. The slave drives NULL on SResp, completing the first response
phase.

Timing Diagrams 169

. The master sees that SCmdAccept is asserted, so it can launch a third

read even though the response to the previous read has not been received.
The slave captures the address of the second read and begins driving DVA
on SResp and the read data on SData.

. Since SCmdAccept is asserted, the third request ends. The master sees

that the slave has produced a valid response to the second read and
captures the data from SData. The request-to-response latency for this
transfer is 1.

. The slave has the data for the third read, so it drives DVA on SResp and

the data on SData.

. The master captures the data for the third read from SData. The request-

to-response latency for this transfer is 2.

10.9 Response Accept

Figure 29 shows examples of the response accept extension used with two
read transfers. An additional field, MRespAccept, is added to the response
phase. This signal may be used by the master to flow-control the response
phase.

Figure 29 Response Accept

Request
Phase

MCmd IDLE >< RD; >< IDLE >< RD, >< IDLE

1 2 3 4 5 6 7

Clk \

SResp DVA >< NULL>< DVA, >< NULL

[

2 g

8 S SData D,

0 =

o Qo

o

MRespAccept

OCP-IP Confidential

170 Open Core Protocol Specification

10.10

OCP-IP Confidential

Sequence

A.

The master starts a read request by driving RD on MCmd and a valid
address on MAddr. The slave asserts SCmdAccept immediately, and it
drives DVA on SResp and the read data on SData as soon as it sees the
read request. The master is not ready to receive the response for the
request it just issued, so it deasserts MRespAccept.

Since SCmdAccept is asserted, the request phase ends. The master
continues to deassert MRespAccept, however. The slave holds SResp and
SData steady.

The master starts a second read request and is ready for the response
from its first request, so it asserts MRespAccept. This corresponds to a
response accept latency of 2.

. Since SCmdAccept is asserted, the request phase ends. The master

captures the data for the first read from the slave. Since MRespAccept is
asserted, the response phase ends. The slave is not ready to respond to
the second read, so it drives NULL on SResp.

The slave responds to the second read by driving DVA on SResp and the
read data on SData. The master is not ready for the response, however, so
it deasserts RespAccept.

The master asserts MRespAccept, for a response accept latency of 1.

The master captures the data for the second read from the slave. Since
MRespAccept is asserted, the response phase ends.

Incrementing Precise Burst Read

Figure 30 illustrates a burst of four 32-bit words, incrementing precise burst
read, with burst framing information (MReqLast/SRespLast). Since the burst
is precise, the MBurstLength signal is constant during the whole burst.
MReqLast flags the last request of the burst, and SRespLast flags the last
response of the burst.

Timing Diagrams 171

Figure 30 Incrementing Precise Burst Read
1 2 3 6 7
Clk \
MCmd IDLE >< RD; RD, RD; RD, IDLE
MAddr 0x0; Ox4; 0x83 OxC,
MData
3 o MBurstLength 4 >< 4 4 4
L n
S ®©
o
Fo MBurstSeq INCR || INCR || INCR || INCR
MBurstPrecise
MRegLast
SCmdAccept
SResp NULL >< DVA; DVA; DVAs >< DVA, >< NULL
[
g%
8 SData Dy >< D, >< Ds >< Ds %
) e
o
x
SResplLast %
A B C D E F G
Sequence

OCP-IP Confidential

A. The master starts a read request by driving RD on MCmd, a valid address

on MAddr, four on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
last request in the burst. The slave is ready to accept any request, so it
asserts SCmdAccept.

. The master issues the next read in the burst. MAddr is set to the next

word-aligned address (incremented by 4 in this case). The slave captures
the address of the first request and keeps SCmdAccept asserted.

. The master issues the next read in the burst. MAddr is set to the next

word-aligned address (incremented by 4 in this case). The slave captures
the address of the second request and keeps SCmdAccept asserted. The
slave responds to the first read by driving DVA on SResp and the read data
on SData.

172 Open Core Protocol Specification

D.

E.

F.

G.

The master issues the last request of the burst, incrementing MAddr and
asserting MReqLast. The master also captures the data for the first read
from the slave. The slave responds to the second request, and captures
the address of the third request.

The master captures the data for the second read from the slave. The slave
responds to the third request and captures the address of the fourth.

The master captures the data for the third read from the slave. The slave
responds to the fourth request and asserts SRespLast to indicate the last
response of the burst.

The master captures the data for the last read from the slave, ending the
last response phase.

10.11 Incrementing Imprecise Burst Read

Figure 31 illustrates a burst of four 32-bit words, incrementing imprecise
burst read, with burst framing information (MReqLast/SRespLast). MReqLast
flags the last request of the burst and SRespLast flags the last response of the
burst. The last burst request is signaled primarily by driving the value 1 on
MBurstLength.

OCP-IP Confidential

The burst length sequence (3,3,2,1) is chosen arbitrarily for illustration
purposes. The protocol requires that the burst length of the last transfer of
the burst be equal to one.

Sequence

A.

The master starts a read request by driving RD on MCmd, a valid address
on MAddr, three on MBurstLength, INCR on MBurstSeq, and asserts
MBurstPrecise. The burst length is the best guess of the master at this
point. MBurstSeq and MBurstPrecise are kept constant during the burst.
MReqLast must be deasserted until the last request in the burst. The slave
is ready to accept any request, so it asserts SCmdAccept.

The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The MBurstLength
is set to three, since the master knows the burst is longer than it originally
thought. The slave captures the address of the first request and keeps
SCmdAccept asserted.

The master issues the next read in the burst. MAddr is set to the next
word-aligned address (incremented by 4 in this case). The MBurstLength
is set to two. The slave captures the address of the second request, and
keeps SCmdAccept asserted. The slave responds to the first read by
driving DVA on SResp and the read data on SData.

Timing Diagrams 173

Figure 31

Request
Phase

Response
Phase

MBurstPrecise

Incrementing Imprecise Burst Read
6 7
Clk
MCmd RD, >< IDLE
MAddr Y.
MData
MBurstLength >< 3 W
MBurstSeq >< INCR W

MRegLast
SCmdAccept
— SResp X DVA, >< DVA, >< NULL
SData X D, >< D, W
SRespLast %
G

OCP-IP Confidential

. The master issues the last request of the burst, incrementing MAddr,

setting MBurstLength to one, and asserting MReqLast. The master also
captures the data for the first read from the slave. The slave responds to
the second request and captures the address of the last request.

responds to the third request.

. The master captures the data for the second read from the slave. The slave

The master captures the data for the third read from the slave. The slave
responds to the fourth request and asserts SRespLast to indicate the last

response of the burst.

last response phase.

. The master captures the data for the last read from the slave, ending the

174 Open Core Protocol Specification

Request

Response

10.12 Wrapping Burst Read

Figure 32 illustrates a burst of four 32-bit words, wrapping burst read, with
optional burst framing information (MReqLast/SRespLast). MReqLast flags
the last request of the burst and SRespLast flags the last response of the
burst. As a wrapping burst is precise, the MBurstLength signal is constant
during the whole burst, and must be power of two. The wrapping burst
address must be aligned to boundary MBurstLength times the OCP word size

in bytes.

Figure 32 Wrapping Burst Read

Phase

Phase

Clk

MCmd
MAddr

MData
MBurstLength
MBurstSeq
MBurstPrecise
MRegLast

SCmdAccept

SResp

SData

SResplast

Sequence

1 2 3 4 5 6 7
IDLE >< RD; RD, RD3 RD4 IDLE
0x8; X 0xC, X 0x03 X 0x44
4 >< 4 >< 4 >< 4
WRAP >< WRAP >< WRAP >< WRAP
NULL >< DVA; >< DVA; >< DVA; >< DVA, >< NULL

A

B

D

)
¢
7

Cc

A. The master starts a read request by driving RD on MCmd, a valid address
on MAddr, four on MBurstLength, WRAP on MBurstSeq, and asserts
MBurstPrecise. MBurstLength, MBurstSeq, and MBurstPrecise must be
kept constant during the burst. MReqLast must be deasserted until the
