PSS Early Adopter (EA)
Portable Test and Stimulus Standard

June 14, 2017

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Abstract: The definition of the language syntax, C++ library API, and accompanying semantics for the spec-
ification of verification intent and behaviors reusable across multiple target platforms and allowing for the
automation of test generation is provided. This standard provides a declarative environment designed for ab-
stract behavioral description using actions, their inputs, outputs, and resource dependencies, and their com-
position into use cases including data and control flows. These use cases capture verification intent that can
be analyzed to produce a wide range of possible legal scenarios for multiple execution platforms. It also in-
cludes a preliminary mechanism to capture the programmer’s view of a peripheral device, independent of the
underlying platform, further enhancing portability.

Keywords: behavioral model, constrained randomization, functional verification, hardware-software inter-
face, portability, PSS, test generation.

i Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Notices

Accellera Systems Initiative (Accellera) Standards documents are developed within Accellera and the
Technical Committee of Accellera. Accellera develops its standards through a consensus development pro-
cess, approved by its members and board of directors, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Systems Initiative.

8698 Elk Grove Blvd Suite 1, #114
Elk Grove, CA 95624

USA

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not

Copyright © 2017 Accellera. All rights reserved. iii
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera, provided that permission is obtained from and any required fee is paid to Accellera. To arrange
for authorization please contact Lynn Garibaldi, Accellera Systems Initiative, 8698 Elk Grove Blvd Suite 1,
#114, Elk Grove, CA 95624, phone (916) 670-1056, e-mail lynn@accellera.org. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the PSS Standard EA are welcome. They should be sent to the PSS email
reflector

pswg@lists.accellera.org

The current Working Group web page is:
http://www.accellera.org/activities/working-groups/portable-stimulus

iv Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Introduction

The definition of a Portable Test and Stimulus Standard (PSS) will enable user companies to select the best
tool(s) from competing vendors to meet their verification needs. Creation of a specification language for
abstract use-cases is required. The goal is to allow stimulus and tests, including coverage and results
checking, to be specified at a high level of abstraction, suitable for tools to interpret and create scenarios and
generate implementations in a variety of languages and tool environments, with consistent behavior across
multiple implementations.

Copyright © 2017 Accellera. All rights reserved. v

This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Participants

The Portable Stimulus Working Group (PSWG) is entity based. At the time this draft standard was com-
pleted, the PSWG had the following membership:

Vi

Faris Khundakjie, Intel Corporation, Chair
Tom Fitzpatrick, Mentor, a Siemens business, Vice-Chair
David Brownell, Analog Devices, Inc., Secretary
Joe Daniels, Technical Editor

AMD: Karl Whiting

AMIQ EDA: Cristian Amitroaie, Stefan Birman

Analog Devices, Inc: David Brownell

Breker Verification Systems, Inc.: Adnan Hamid, Dave Kelf

Cadence Design Systems, Inc.: Bishnupriya Bhattacharya, Stan Krolikoski, Larry Melling,
Sharon Rosenberg, Matan Vax

Cisco Systems, Inc.: Somasundaram Arunachalam

IBM: Holger Horbach

Intel Corporation: Ramon Chemel, Faris Khundakjie, Jeffrey Scruggs
Mentor, a Siemens business: Matthew Ballance, Tom Fitzpatrick
National Instruments Corporation: Hugo Andrade

NVIDIA Corporation: Mark Glasser

NXP Semiconductors N.V.: Monica Farkash

Qualcomm Incorporated: Sanjay Gupta, Kelly Mills

Semifore, Inc.: Jamsheed Agahi

Synopsys, Inc.: Rick Eversole, Shrenik Mehta, Hillel Miller, Srivatsa Vasudevan
Vayavya Labs Pvt. Ltd.: Karthick Gururaj, Sandeep Pendharkar

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

Contents
1. OVEIVIBW ...ttt ettt ettt ettt et s a et b et s a e et e e bt e bt e et e bt eb e et e eaeeeeeem et ebeemeesbeemteabeenseebeenseeseenteane 1
) S o 11 4 01 PSPPSR 1
1.2 Language design CONSIACIAtIONS.ccouiruiriirieriiitieieetcete ettt ettt ettt ettt eae et enee e ene 1
1.3 MOAEING CONCEPLSeeuviiiiiieiieieeiiett ettt sttt ettt sttt ettt ettt e et seeestesaee bt sseentesaeenbeeneeneeens 2
1.4 TSt TRALIZATION ..ottt ettt ettt ettt eb et st e bt st e e e st e st eee e e eneenaeene 2
1.5 CONVENTIONS USCAvvieiiieiiieeiieiieeieetie st eeteesteeebeeaeesebeeseessseebeessseesseessaeasseesseasseenseessseesseensns 3
1.5.1 Visual cues (INEta-SYNLAX) ...occeerieiereieiieieeierieeie et eteetee sttt eseeseeeee e teeseeseeneeneeens 3
1.5.2 Notational CONVENLIONScccueriieirierieeiiiesieesieeteeteesteesseesteessseesseeesseessesssseesssessseenns 4
1.5.3 EXAMPLES .oueeeiieiieiieiieeeee ettt ettt et ettt st e n ettt teene et neeteene 4
1.6 Use of color in this Standard..............ccueevuieciiiiiiiiieic et e ae e 4
1.7 Contents of this StANAArdcc.eecuiiiiieiieiicciece e et be et b e eaeenenas 4
2. RETETEIICES ...ttt sttt et ettt ebe et be e saenbentens 5
3. Definitions, acronyms, and abbIeVIatioNS.ccvecveriieriereeiieriesiesieeieseeieereeseeaesseeeessesaesseensessens 6
31 DEIINIEIONS 1.ttt ettt b bbbttt bttt et b et e h e b st nee 6
3.2 Acronyms and abDIrEVIAIONSc.eecieruieierierierieeierieetesteeteseeeteseeessesseessesseessessaessessaensesssensenns 7
4. LeXICal COMVEITIONS ...ttt ettt ettt ettt bbbt eb et b e bbb ettt et eaeebe e bt ebeebesbesbesaenbentens 8
4.1 COMUMEIES. c..enieeiieetieite ettt ettt et ettt ee e st eb e bt et sh e este s bt et e s bt eat e eb e et eaeenbesmeesbeemnenbeas 8
4.2 TAENEITIETS .eueiieiiitiete ettt ettt sttt sttt b et bttt e at e bt sbeesaeennenaeas 8
4.3 KEYWOTAS .ovviiieiiietieieeteeste et ete et et e et e e et et e e st e beeseesseesse st esbesbeesbesssesseessasseessesseeseesseasaesesensessens 8
5. EXECUtioNn SEMANTIC COMCEPLS ...eeuvierriiiieeriieriieetiesitestteeteeteesteestessseesseessseenseessseenseessseaseensesssseesseensses 9
5.1 OVEIVIEW .ttt ettt ettt ettt b ettt et e bt e bt e bt e s bt ea e et eat e st e eseesbe e et sbeemtesbeeaesbeenbesbaenteene 9
5.2 Assumptions of abstract SChedUliNg.........cccceeciiiiierienii e 9
5.2.1 Starting and ending action EXECULIONScceerieruieirriereeiesiieieeteeneeeteeeeseeeneeeeeeeeenes 9
5.2.2 CONCUITEINCY ..euveueeueeteauteueautanteeteentesteeneeaseetesueaeesaeetesaeeeesseenseaseenseeseeneesneensesseeneesnes 9
5.2.3 Synchronized INVOCATIONcceeruiiieriiiieieeie ettt ettt 9
5.3 SChEdULING COMCEPLS -.c.ueeteeiieitiitiete ettt ettt ettt sttt et e e st e st et e e ese e teese et e eneeseeeneenneeneas 10
5.3.1 Preliminary definitionsccooceiieiierieieniee ettt 10
5.3.2 Sequential SChedUIINGcccoviriiriiiiiniiiiii et 10
5.3.3 Parallel SChedulingccccoeviiiriiiiiieicieecre ettt 11
6. G SPECITICS vttt ettt ettt et sb e ettt sttt et eb bt e bt ebe e bbbt be b e neen 12
7. DAt LYPES .ottt et st h et sa et naee 14
8 BT - ¢ TR 14
T L1 DSLSYNEAX ceeiiiieiiiieiiniieieeeet ettt sttt sttt st et s e 14
To1.2 G SYMEAX wiieiieiieeieeiee sttt sttt e et e bt e st e et esate et e e sbessbeenseesabeenseesnbeenbbeenbeenaeens 14
8 T T 2 1111 o) 1RSSR 21
7.2 BOOICANS ...ttt ettt ettt et be e e aes 22
7.3 BIIUINS .eoeniiiiiiieieente ettt ettt ettt ettt et a et sa e et s bt et s bt ease bt e s e bt et esut et eaeent e sae e saeenne b s 22
7.3.1 DISL SYMEAX ciiiiiiieriieeiie ettt ettt ettt ettt e sb e sttt sttt sat e b e sabeebeesabeebeens 22
T.3.2 G SYMEAX woiiiiiiieeieeiee sttt sttt ettt e sttt et e sate st e e bt e s be e bt e sa bt et e eabeesbaeenbeenaee s 22
7.3.3 EXAMPIES cvviiieiieiiieieieeieie ettt ettt et sttt ettt b e te st e ere e st e steenaesaeenaenaeas 23

Copyright © 2017 Accellera. All rights reserved. vii
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

10.

viii

A 1 14 V4TRSS 24
I R O e o) G 117) OO O OO P U RTUPRRUSRP 24
TA2 EXAMPIES ceeiiiiiieiiieieieeieie ettt ettt ettt e e sa et et este e st e ere et e ereenaesaeenaennean 25
7.5 ChANALES ...ttt b e et b et st bt be s 26
Ti0 SEIUCES .ttt ettt ettt ettt et et e s bt et e bt e s bt e bt e e et e e bt e eabe e bt sab e e bt e s et e nbeesateeane 27
T.6.1 DISL SYMEAX ceuiiiiiieiieiie ittt ettt ettt ettt et e st et s e et e s bt e esabe et e e nabeenteens 27
T.0.2 G SYMEAX .iieiieiieeieeiee ittt et eieeste et e st e s bt e stteeateestteesseensaessseeseessseeseesnseenseennseeseens 27
T T £ <: 1113 1 SRR PSR 28
7.7 User-defined data tYPeS......ccecieierierierieeieeetete st ste ettt ettt saeste et e seensesseenaesseensenneas 28
771 DSL SYNEAX couiiiiieiieiieeieeste et esiee et et esteeteesttesbeesaaesateessseenseesseesnseensaesnseenssesnseens 29
TR O e) 1 1 b QOO R PRSPPI 29
A T 253 111 o) 1 SRR 29
T8 ATTAYS ittt ettt ettt ettt et b e ettt st e bt e e et e e bt e ea bt e bt e sab e e beennbeebeenatenane 29
T.8.1 Gt SYMEAX .eivuiieiieiieeieeitee et etee st eit e st e s bt estee s beestaesaseenseessseenseessseenseesaseeseennseenseens 29
R 2 <: 1113 1T 34
R T o (o) o1 (3 1< SRR 34
ALCHIOTIS 1.ttt ettt h bbbt bbbt b bt et et et et eb e eb e eb e bt bbb bt ebentene 36
81 DS SYMIAK .ietieiiiiiiieeiieeiie st esteerite et e te st e st eete e bt e ssbeesseessbeensaessseensbeenseenseesaseeseensseensaensaennne 36
LI O o 1 1 b OO 37
LTI T 25 €111 o) 1SS 37
FLOW ODJECS 1 .viviiieieciiet ittt ettt ettt ettt et e et e et e e teesbeeaeessesseesbessaesbessaessaessessaessenseeseensessseneas 38
L B 21 ¥ i (<) o] o <!t O STPTUSUPRURRPRS 38
.11 DSL SYNEAX weettiiieiiieiieet ettt ettt ettt et ettt st e st et e s bttt e bt et e st e et as 38
0.1.2 G SYNEAX weieiiieeiieiiieiteei ettt ettt et et e st e bt e satesbeesatesabeesaeesab e e bt e enbeebeesabeeneens 38
L2 TG T 2 < 11 0] 1SS PRUSRR 39
0.2 SHICAM ODJECESeeueitieiieetieie ettt sttt ettt ettt ettt bt et e s bt e tesb e et e e bt e teebeenbeeseeteeneenteeneeneas 40
9.2.1 DSL SYNAX cetiiieiiiiieienieeeeree ettt e st 41
0.2.2 G SYNEAX .eteiieeiieeiieiteettertte st et et e et e bt e set e e bt e sttesbeenate s bt enaeesabe e btesabeebeesabeebeens 41
0.2.3 EXAMPIES cnevieiieeiieciieee ettt sttt sttt e et e e teeenbeenbeesnbeenbeens 41
L T 1l o) o) [1 TSRO 43
9.3.1 DISL SYNAX ceviiieiiiiiiieiieeeeseee ettt ettt 43
0.3.2 G SYNEAX weieiieeiieeiienite et tet et et et e et e bt e sttt et e e stte st e e atesabe e bt e sat e e bt e eabeeabeennteeneens 44
0.3.3 EXAMPIES coevieiiiiieeiece ettt ettt s be e beesnbeentaeenaeenreas 44
9.4 USING TIOW ODJECLS......eeutiuiriiitiriintiteteteicete ettt ettt ettt ettt st st e et ene et enes 45
.41 DSL SYNEAX teevtiieieiiieriteeitei et ettt ettt et et e sttt st e e satessbeesaeesab e e s bt e sabeebeesabeeaeens 45
0.4.2 G SYMEAX .iiiiieiieeieeieesiteeieeiee st eite st e bt estt e e beestteesbeesteesbeesseesabeesnsesnbeesbbeenbeenaeens 45
LR T £ <: 11110 1SR PRSP 46
9.5 Implicitly binding floW ODJECESeriiiiieiieiieiee et 46
RESOUICE ODJECLS ...veeieieetieieeie ettt ettt ettt ettt et e st e e e s st esaesseensesseenseeseensessaensesseensenneensenns 47
10.1 Declaring reSOUICE ODJECLScvieieriieierieiieteiteeteteeeteeteetesteetesreesaesseessesseesseessenseeseessesseesenses 47
LO. 1.1 DSL SYNEAX weutiiuietietieieeieente ettt sttt ettt et ettt et et e bt eate bt et e sbeem et e enbesbeentesseeneeeaee 47
TO. 1.2 G SYNEAX wveeiieeiieeitieete ettt ettt ettt ettt ettt e sb e e bt e st e sab e e sabeeabeenbaesnbeenaee s 47
10.1.3 EXAMPIES .oovveiieiieiieieie ettt ettt ettt ettt e sseesaesseenaesseensessaenseeseensenneensenns 48
10.2 Claiming reSOUICE ODJECES ..ouviiuieiierieiieiieieiteeteteteeeteeteetesteetesreesaesreessesseessesssesseeseessesssensenss 48
JO.2.1 DSL SYNEAX wutieuietieiieieeiieste et tet ettt et ettt ettt e sbe st e bt emtesbees e s beenbesbeentesseeneeeae 48
10.2.2 G SYNTAX .veeeeieeiiieniienieeieesit ettt site ettt st e et e sate e bt e sabeebeesatesnbeesabesabeesbaesnseenaeens 48
10.2.3 EXAMPIES .oovviiieeiiiieiiecieetestt ettt ettt ettt sbeesaesaeesaesbeesbestaenseeseenseeseenseens 49

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

11. Components and pools

11.1
11.2
11.3
11.4
11.5

11.6

12. Activities

12.1

12.2

12.3

12.4

12.5

12.6

13.1

June 14, 2017

... 51

DISL SYNEAX .ttt ettt ettt et ettt et e bt e st e sb e e st e be e et e et e st e enbeesbaeenbeeaeens 51
CHE SYMIEAX vttt ettt ettt ettt et e s et et e sttt s bt e sbt e e bt e shtesab e e bte e bt e heeeab e e s st e sabeenbbeeabeenneens 51
EXAMPLES ...ttt ettt et et e et et e e st e b e esa e be e st e sbeessesaeesseeheesbeeseenbeereenseereenrenrs 53
COMPONENLS S NAMESPACES ..veeuvveerrrerereereerreesueesseeasseesseesseessseasseessseesseessessssessssesssesssssessesssees 53
Component INSTANTIATIONeecvieriieiieiienieeseeete et eeeeeeteestbeesteessbesseesseessseesssessseessseasseenseens 53
L1.5.1 S@MANTICS .eeeuvieeieiieeieie ettt te ettt ettt et et ea et e e e steeneesseeneesseensesseenseeseenseeneeneeenes 53
11.5.2 EXAMPIES .oovveiieiiiieiieii ettt ettt ettt ettt ettt e et e sseesaesseensesseessensaensesseensenseensenns 54
COMPONENE TEIETEICESvievieiiitieiecieeieteete ettt ettt e ste et e st e e ea e beesaesbeesbesseeseesseessesseensesaeessenseas 57
T1.6.1 SEMANTICS .eeouiiiiiiieiieiieieet ettt ettt ettt ettt sb ettt sb et sbe e saee 57
11.6.2 EXAMPIES .oeeeiieiiiiieiieie ettt ettt sttt sttt et a e e 58
Pool instantiation and s$tatic DINAINGcceeeeieriirieieieeee e 60
T1.7.1 DSL SYNEAX .utiiiiiiieiieiieeeet ettt ettt et e 60
L1.7.2 G SYINEAX wveeeiieeiiieiieete ettt ettt et et e st et e sat e e bt e sibe e bt e satesabeesatesnseenbaesnbeenaeens 61
11.7.3 EXAMPIES .oovviiieiiiiieiiecie ettt ettt et ettt et sbe et e e b e sbeesb e saesbeeseesbesreenseenis 61
11.7.4 Static pool binding dir€CHIVEcceevuiriirieriieieieiieee ettt ere e 61
11.7.5 Resource pools and the instance id attributeccooceeviiiiiiiiiiiieeceece e 64
11.7.6 Pool of states and the initial attribULeceveieriieiierieiereeee e 66
11.7.7 Sequencing constraints 0n State ODJECESc.ecveveriiereerieeiieriieiesteerenieere e enresseense e 68
.. 70
ACHVILY AECIATATIONS ...eeuvieeieiiiieiieie ettt ettt e s teesteeebeesbeesnaeeateesnbeenseessseenseenseens 70
ACHVITY COMSIITCTSveuiettenteteeiieete et te et et st ete et e et e et e et eaeeste e cesbeemeesbeeneesaeenseaseenseeseeneeeneeneesees 70
12.2.1 DSL SYNEAX wietiieiiiiiieiteeiteete ettt ettt ettt ettt et s e st e st eate e b e s b e naee s 70
12,22 CHE SYNAX .ooiiiiiiieiieie ettt ettt ettt et e sh e ettt e 71
12,23 EXAMPIES .ovveiieiiiiieieiceiestt ettt ettt ettt b e sbe et e s e esae st e ess e saenbeeseensenseenneens 71
Action scheduling StAtEMENLS.........c..ccveriiiieriiiieierie ettt e e seebesreesseesaesseeeas 73
12.3.1 Action traversal StateMENTccoceevierierierienieieie ettt 73
12.3.2 Sequential BIOCKccuiiiiiiieee e 77
L G T o - 1 1 <) TSP 79
12.3.4 SCREAULL ..ottt ettt 82
ACtiVity CONIOI-FlOW CONSIIUCES......iivviriiiieiiiieietieierte ettt sbe b sbeebesreessesseesseeeas 85
12.4.1 TEPEAL (COUNL) .evivivieiieeieeieeiieeteesteesteesteeteesebeeteessreeseessseensaesssessseesssesnseesseesssesnseens 85
1242 1€PEAL WHILE .oouveieiiiiiecie ettt st tae et et e st e e s aaeenbe e taeenbeennee s 88
12,43 fOTCACK ..ottt 90
12,44 SCLECE ettt h ettt e e ne e ene 92
12,45 TF-@I8C eeieiiieitieee ettt bttt et ne e ene 94
NAMEA SUD-ACTIVILIES ...ttt ettt ettt ettt ettt ettt ettt st be b naeneen 96
12.5.1 DSL SYNEAX tievuierieeitierieeieeniesteesttesiteeteesieesateeseesaseesseessseesseesssessseesssesseesssesssessseens 96
12.5.2 Scoping rules for named SUb-aCtiVItIEScceevueririeeririeniiienceeeee e 96
12.5.3 Hierarchical references using named sub-activitycccccoceverieoeniinienceneneeee 97
Explicitly binding flowW ODJECESeeiuieeieiiieieieeeetiee et 98
12.6.1 DSL SYNEAX tiertieriieiiieriieeieeiteente sttt st tee st et e st e bt e satesbeesatesabeesatesabeenbaesnbeenaeens 98
12.6.2 CA SYNEAX .veervieeiiieiiienieeieenite st et e stte st e e st e et e sate e bt esateebeesatesabeesatesaseenbaesnseenseens 99
12.6.3 EXAMPIES .ovvivieiiiiieiieiieeecte ettt ettt ettt sa e ettt et et nbeereenbeetae s ens 99
13. Randomization specification CONSIITCTSeererieiiriirierie ettt ettt seeeaesaeas 101
ALZEDIaiC CONSLIAINESeeueieieiieiteeiietieiiet et eet ettt et et e st ete s bt ente st eenbesseensesneensesneensesneensesnean 101
13.1.1 MemDEr CONSLIAINTS ...c.eeuieeiieiieriieieeeeeiesiesteeeteesee e eseeseeeneesseeeeseeeneensesneenseeneeseens 101
13.1.2 Constraint iNNETItANCEccceviereeiriririnienieteeet ettt ene 104
13.1.3 Action-traversal in-1ine CONSIrAINESccceoeevieriieiininieniiieeeeene et 105
Copyright © 2017 Accellera. All rights reserved. iX

This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

14.

15.

June 14, 2017

Portable Test and Stimulus

13.1.4 Set membership EXPreSSIONcccoeieriireriieieeieeee ettt st eneeneeens 108
13.1.5 TImplication CONSLIAINEcceeivieierieeeieieseeietesteeee st eeeseeeaes e eeesreensessesnsesseessensenns 110
13.1.6 1f-€ISE COMSLIAINEeotiieiiieieieeeicete ettt sttt sb e 111
13.1.7 foreach CONSIIAINTcceiuieiiieieie ettt ettt sae e enens 113
13.1.8 UNIQUE CONSLIAINE ..eeuveeieiieiieiierieeieteeteie st etesteeaesteeseesseensesseesesseensesseensesseensensaens 115
13.2 Scheduling CONSLIAINTS........ccvirtierierieeierieetesteetieteeteesteereessessaesseesseseessasseessanseessesseensesssesesses 116
13.2.1 DSL SYNEAX tieeteieuiieiiieeieeiieneesteesteestaesteesteessseesseessseesseesssesseessesssseesssesssesssesnssesnses 116
13.2.2 EXAMPIE eoeiiiiiiieieeiee ettt ettt ettt et et et ne et e ae et eneens 117
13.3 RaNdOMIZAtION PIOCESS ..c.veeviervieeierieiieieetesteereesieseesseeseessesssesseessessaessasseessesseessesseensesssessessees 117
13.3.1 Random attribute fleldscccooiieiiriiiiiii e 118
13.3.2 Randomization of floW ODJECTSeeueeiiiiirieiieiieee et 120
13.3.3 Randomization Of reSOUICE ODJECESccuevuerierieriieiieieieeet et see et eens 122
13.3.4 Randomization of component asSIZNMENtc.cccveereerirerieenieeriieeneeereesreenneenens 124
13.3.5 Random value Selection OIdercecereriieieiieieri et 125
13.3.6 Loops and random value SEIECtiONccoceeeveriieiiirieieriieieee et 125
13.3.7 Relationship l00Kaheadcceeviiiieiiiiiiieiecieee et rens 127
13.3.8 Lookahead and SUD-2CIONSceceruieiiirieeieiieeiieeee ettt 129
13.3.9 Lookahead and dynamic CONSLrAINESccccereeueriiriieieneieeeneeeeseeee e eeeeneens 131
13.3.10 pre_solve and post _S0IvVe €XeC DIOCKScceveeiiiirieiiciiciccicee e 133
13.3.11 Body blocks and sampling external datacccccceeveeriienienieiiienee e 138
Coverage Specification CONSIITCESecueiirieriirieierte et ete ettt e e ettt e eeeeeseeentesneeeesseensenaeens 141
14.1 cOVErSPEC AECIATALIONccuveeiieiieiiiciieie ettt ettt e e b e e esbeesbesseenseeseensessnensessnas 141
T4.1.1 DSL SYNEAX tiecueeeiieeiiieiieeitesteesteeteestaesteeteessseeseessseesseessseassaessesssseesssesssesssessssesnses 142
14.1.2 EXAMPLES .oueieiiiieiieiiee ettt ettt ettt et et e ee et entesneeteeaeeneenneen 142
14.2 COVEISPEC INStANTIATION ...evvveueieienieeeieieeitetesteettenteeteesaeeeteseeaessesssessesnsesseenseseensesseensesnsensesnen 143
14.2.1 DSL SYNEAX .iecueeeieeriieiieeiieseesieeiteesstesteesteessseesseessseesseessseassaessesssseesssesssesssessssenses 143
|3 > 111 o) (<1 SRS SPRRRP 143
14.3 COVEIPOINTE OAL....euiiiieiieiieeieie ettt ettt ettt et e st st e b e e sa et en et e enseseensesneensesneensennean 143
14.4 Referencing existing bin SCHEMESccvevieriieieiiieierie ettt seeeseeneas 144
o3 (0 T3 o TP 144
14.6 COVEISPEC COMSITAINES. ...uvetieutieteeeeeetetesseetesteestenseeseesseeseesesseessesssensesssasseenseseensesnsensesseensessen 145
14.6.1 INOTE CONSIIAINT ...ecvieiieiieieeiieiesieetesieetee e eeesteessesteeseesseessesseesaesseessesseessesseessensanns 145
14.6.2 THe@al CONSIIAINE ...ccuvieciieiieeiieiee et eieerieeeeete et e seteete e taeebeenseesebeesseessseenseenssesnses 146
14,7 COVEISPEC DIIS .ttt ettt ettt ettt ettt ettt et e e st e bt en e et ene e st eneeeneeneeeneenseaneas 147
T4.7.1 DSL SYNEAX tievtieriieiitieriiesiieeitenteeteesttesitesteeseteesteestaeeseesaesseenseeseseenseesssesseesssesnses 148
14.7.2 EXAMPIES .oevieeiieiieeiieeie ettt ettt ettt e seteete e seaeebe e saessbaeseesebeenseessseeseennseenres 148
14.7.3 Explicit value and range groupingccecceveeeeerierierienierieneeneeseeeesieeee e eeeeneeens 148
14.7.4 Value range divide OPErator (/)cceeveeerereerieniieierieeeseeetese e sreeaesreeaeseeeseenseens 148
14.7.5 Value range SiZ€ OPETALOT (1) ..eeeveerveereerieerieenieenieesreesseessreesseesseessseesseesseesssessssesnses 149
14.7.6 Wildcard DIN () ..oocvieciiiiiecieeie ettt e be et seb e aeesebeesbeeenaeenes 149
B TS €S 13 1o o PP S 150
15.1 Specifying tyPe EXLEINSIONScuveverrrerertreterteertesiereesteeseessesaessesssesseessesseessesseessesseessesssessessees 150
I5.1.1 DSL SYNEAX tiecveeeiieeiiieiieeiiesieesteeteesteeseeeteessseesseessseessesssseasseesseessseesseesssesssessssesnses 150
D512 G SYINEAX weeeviieeiieeitiente ettt ettt et e st et e st e e shte e be e bte s bt e bt e sebeesaeesabeebeesnneentes 150
15.1.3 EXAMPIES .ovveiiieieiieiieieeiietcettete ettt ettt et te et e sbeessesseesaesaeessessaensessaessensaens 151
15.1.4 Compound type EXLENSIONSccceerrierueerrreriieeriierieesreesseessaessseesseessseesseesssesssessssesnses 153
15.1.5 ENUM type EXLENSIONS ..eeveerieuieriieierteeieriesieestesteeseesteeseeseeeneesseeeeseeeseeaseeneesseeneenseens 156
15.1.6 Ordering of type EXLENSIONScceevveerieierierrerreerieiesteeeesseesesseeeesseessesseesessesssensenss 158

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

15.2 OVEITIAING LYPES -eeveenieiieieetietiente e st etteste et este st e e e st e et ese e teeseeseeeseenseeneesseesaeseeneens
15.2.1 DSL SYNEAX teertiieiiiiieiieeiie sttt sttt ettt esbte bt e st e st e st e sateesbeesbeenaeeens
15.2.2 G SYNEAX weeiiiiiiiieiiieiieeite ettt ettt et ettt s be et e st e st e sabeesbeeenbeenaeeens
15.2.3 EXAMPIES .ovveiieiiiiiciieiecteit ettt sttt ae e ae s se e resnaebeenaens

16. PACKAZES ...ttt ettt ettt ettt st eneen

16.1 Package declaration..........cooeeuerieieriiieie ettt
16.1.1 DSL SYNEAX .eertiiiieiriieiieeiterte ettt ettt ettt ettt et et e s e e e i
LO.1.2 G SYNTAX weeiiuiieiieiiiieieeite st iee et ete e st e et esbtesbe et e st e e sieesabeesbaeenbeenaeenns
16.1.3 EXAMPIES .ovveveeiieiieiieieeiete ettt ettt e e sseenesseessesnnensennnens

16.2 Namespaces and Name reSOIULIONc.ecvereerririeriieienrieeereeee e eeeesaeeeesseesneseesnens

16.3 IMPOIt StALEIMENLeeutieieiitieiieste ettt ettt ettt eeee bt s e seeeeeebeeneens

16.4 Naming rules for members across EXteNSIONScccveruerreerierieriereereneeneeseeeeniens

17. TSt TRALIZATION ..ottt ettt ettt ettt ettt et et e et eneeseeneesseennennenneens

17.1 €XEC DIOCKS ..ttt ettt
17.1.1 DSL SYNEAX teeiuiieiieriieiieeriteeieesieesteeieesteeesseesssesseesseessseesssesseesssesssessseenns
1712 G SYNEAX weviiiieieieiieeiieerite et enieeette et e stteeseessaessseenseesaseesseesnseessseensesnseenns
17.1.3 EXAMPIES .oeeiiiiiieieeiee ettt ettt

17.2 Implementation using a procedural interface (PI)........ccccocevivenenenieniinnninincnnne
17.2.1 Import function declarationc..cocceererererininienienineneneeeeeeeee e
17.2.2 DSL SYNEAX teeruiieiieriieiieenitesteeieesite et estteeteesttesbeesaeesabeesssesaseessaesnseenseenns
17.2.3 A SYNEAX wevieiiieieeiiieeieesteeteeseeeete et e stteeseessaesseenseesnsaesssesnseesssessseesseeans
17.2.4 EXAMPIES .oouveiieiieiieiiie ettt ettt ettt eete vt siaeeteesaeesebaessaeenbeessaeenseensneans
17.2.5 Method reSUlt ...cc.ooiiiiiiiiiie e e
17.2.6 Method Parametersc.ccuecererinenenieneeieene ettt enes
17.2.7 Parameter dir@CtiONcceeveieierierierieiiesieteeeeeteeeeseeseeesaeseessesseensesnnens

17.3 PIPSS JAYCT . .c.uiiieiieiieieeeett ettt ettt ettt eve b e e e ssesseessessaessessnensensnens

17.4 PIfunction qUAlTTIETSeecuieiiieiieeieeiie ettt et
17.4.1 DSL SYNEAX .eeiviieiieiiieiieeriieeteesieestteeteesteeesseessseeseesseesssaesssesseessseensessseeans
17.4.2 G SYNTAX .eeiiiiieieeiiie ittt ettt ettt ettt et st e sbeeeaeenaee e
17.4.3 Specifying function availabilityccccceeeeririieiinieeeieccee e
17.4.4 Specifying an implementation languageccceceeevereeeererceenreseesrennens

17.5 Calling PI MEthodScccoovieiieieriieierie ettt ettt e e sae e sbeseaeseesaens

17.6 Target-template implementation for import functions..........ccceeceeeeveereercieenvenneenne
17.6.1 DSL SYNEAX .eeivieeiiiiiiiieeitterite ettt ettt ettt ettt ettt e e saee e
17.6.2 CAF SYNAX .eovtiiiiiiieiieieeieent ettt sttt sttt ettt et e et sbeeae s e e seesbeenbesnnens
17.6.3 EXAMPIES .oeeeiieiieiieiieie ettt et et

17.7 TIMPOIE CLASSES ..euveiieiieiieieie ettt ettt et te st e ettt e e teese et eeseesaesneenseeseessessnenseennens
17.7.1 DSL SYNEAX teervtieiieriieiieeitie st eiee sttt stte et e sbtesbeesiee st esieesabeesbeeebeenaeeens
17.7.2 G SYNEAX wevieiiieiieiiieeiieenite st esiteeete et e seteeteesttessbeenaeesateesseeenseessneensesnseenns
17.7.3 EXAMPIES .oouviiiiiieiieciieeieeeie ettt ettt e seteeveestaesteesaeesebaessaeesseessaeenseensaeans

17.8 Implementation using target-template code blocks..........cooeriiniiininiiniiieees
17.8.1 Target-template code exec block Kindscccceveriienieieniiiienecieeee
17.8.2 Target [anGUAZEcceeveeeieiieieie e citete sttt aessessaenseennens
17.8.3 €XEC fI1@ eveiiiiiiieieeee e

17.9 C++ in-line solve exec IMpPlementationcc.evveeceerrieiinreerienieeeeseeee e eesereeenens
17.9. 1 CAF SYNAX oottt ettt sttt sttt ettt e et esee et et eseesseenbeennen
17.9.2 EXAMPIES .oeeevieiieiieiieieeieett ettt sttt ettt et st et esaeeneenneeneen

17.10 C++ generative target exec iImplementationccecuevererenenenenrenieneeneeenenennens
17.10.1 Generative PT €XECScoveieuiriririiniinienieeeiteeeieeie ettt
17.10.2 Generative target-template €XECSccvvervieereerieerieenieeiieneeeieeseeeveesaeenns

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

June 14, 2017

Xi

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

17.11 Comparison between mapping MeChaNISMScceeruieiiririieriieiereeese et 188

17. 12 EXPOTTEA CHIOMS ...ttt sttt sttt sttt s 190
17.12.1 DSL SYNEAX c.veuirieiirieiinieinieitnteieetet ettt sttt ae sttt sb et b et se e e s s saene 190

17,122 CAF SYNEAX .eeutiiiietieiieieetce ettt sttt et b et e et e s et e st e st e entesbeeeesueeneesbeenaesbeensenneans 190

17.12.3 EXAMPLES ..neeenieiieieeiieieee ettt ettt ettt ettt et et e eesaeentesneeaeeneensenneens 191

17.12.4 Export action foreign language bindingccceeveriiriesiinieneneeiesieie e 192

18. Hardware/Software Interface (HSI).......cocovieiiieieiicieiieeeee ettt 193
Annex A (informative) BiblIOZIaphyc.coiiiiiiioiii e e 194
Annex B (normative) FOormal SYNEAXccceeoieriieieriieiesieteeie sttt ettt see e ee st eesseeeeseeensenneens 195
B.1 Package declarations...........cceeieiiriieiienieeiesieeienie et ete et esa et eeesreenae e esessaensensaens 195

B.2 ACtion dEClarationscccoueerueirueirieuinieiinieineeienietnteee sttt sttt ene bt es e s nenes 195

B.3 Struct declarations...........ccevueereirieinieinieineeneeereent ettt 197

B.4 Procedural interface (PI)........ccocieiiiiiieiiecie ettt sttt et sae b e 197

B.5 Component deClarationsccoeceeeereriereeieseeie ettt ettt e et sneeneeeeene 198

B.6 ACHIVILY StALEIMEILSeevveiiieeieiieieetieiesiestesteste e st e steeseesteeseesseessesseeneesseensesseessessesssensenns 199

B.7 OVEITIACS .. .cviniiieiiiieicetcete ettt ettt 200

B.8 Data declarations...........ccouecvecieieiiiniinieiccieiereeeee ettt s s 200

BLO Data tyPeS c.eeeeiieiieeiiet et sttt sh e bt sa e st esaae st e et 201

B.10 CONSIIAINT......oeiiiieiiiiiictiieeeee ettt 202

BL11 COVETSPEC.c.utiiuiieiteeiiieitte et ettt et te st te st esitesebeesbeesate e beesabeenteesaseenseessseenseesssesnseessnesnseense 202

BL12 EXPIESSION....ccitiiiiieiieiieeieestte et eette st e e e stte sttt esteeesae e seeesbeenseessseenseessseanseesssesnseesssesnseenns 203

B.13 Identifiers and HEETalsc.coeoiiiieieiieee e 205

B.14 NUMDEIS ...c.cviiiiiieiiieieetcee ettt enis 206

B.I5 COMMENLS ..ottt e 206

Annex C (normative) CHt header fIleS......ccuiiiieiiiiieeiiee e s 208
O B S (< o T TP 208

C.2 File pSS/action_attr.N.....cc.coieiiiiieieciieieeieeee ettt ens 208

C.3 File PSS/ACHION.I ...eoiviiiieiiceeecee ettt eas et e ereens 209

C.4 File pss/action_ handle.h.........cccoooouieiiiiiieiieniicieeee et e 211

C.5 File PSS/AI ..ttt 211

C.6 File pSS/DINA N c..ciiiiiiiiii ettt 215

C.7 File PSS/DIt ittt sttt et ene b e eneenbeens 215

C.8 File PSS/DUITET.N ..ot e s ee 215

C.9 File pss/Chandle.n........c.ooioiiiiie e 216

C.10 File pSS/COMP INSEI .ocuiiiiiiiiieieeeeeieeeee ettt e sseenes 216

C.11 File pSs/COMPONCIILIoviiiiiiieieiicieieetesteeee ettt et eesesbe s e ereens 216

Xii

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

Annex D

Annex E

Annex F

June 14, 2017

C.12 File pss/CONSIIAINT.N ...oeiiieiiiiee et 217
C.13 File pss/enumeration. icooieoieiiiiieiicieieceee et e 218
C. 14 File PSS/EXEC.N.uuiciiiiiciieie ettt sttt e e a st e b e e ta e s e eaeessessnensenes 218
C.15 File pss/eXPOrt_aCtiON.N.....cceeiiiiiiiiiieiiieieecie ettt et eesebeebeesaaeenes 219
C.16 File PSS/EXLENA.N ..ottt 220
C.17 File pss/IMPOrt ClaSS.N.....ccouiiieieiiieiicieie ettt e seeene 221
C.18 File pss/IMPOrt fUNC.Hccviiviiiiiieiiiieiecee ettt e 221
C.19 File PSS/INPULIN ..ottt sttt e et e srbe e e e saaesnseennaeennas 223
C.20 File PSS/INSIAC.N ..eeiiieiiiieee et sttt 224
C.21 File PSS/OCK.N 1ottt s 224
C.22 File PSS/OULPULN ..ottt ettt s st naestaenbenseennenseenes 225
C.23 File PSS/OVEITIAC.N....coiiiiiieiieciic ettt et saae st e e nnaeeneas 225
C.24 File pSs/PaCKAZE.I ..cuiiuiiiiiieieee e e 226
C.25 File PSS/POOLN ...ttt 226
C.26 File pSS/Tand_attr......cc.ccuieieiiiieiecieeete ettt ettt ne e 226
C.27 File PSS/TANZE.N ..c..oiiiieiiii ettt sttt e et b e eas e b e eseebeens 230
C.28 File PSS/TESOUICE. ...ttt ettt e nee e 230
C.29 File PSS/SCOPE.I ...ttt sttt ettt et ens 231
C.30 File PSS/ShArC.N......oeiiieieiiceieecee ettt sttt ettt neens 231
C.31 File PSS/StAte. N ..iceiiiiiieiicicecee ettt ettt ere b eaeenneeeas 232
C.32 File PSS/SIEAIM.Ieeciiieiiieiieiic ettt ettt et e et e et eenbaesaeesnveensneennas 232
C.33 File PSS/StIUCTUIE. N ...ttt e ee s 232
C.34 File pSS/SYMDOLIN ..cc.eiiieiiiiieiecee ettt sttt e eeens 233
C.35 File pSS/LYPE dECLI ..ot ees 233
C.36 File PSS/UNIQUE.N ...eeiiiiieiiicie ettt et st s e et essaeebeessaeenseenseas 233
C.37 File PSS/VEC.H ettt ettt see et 234
C.38 File pSS/WIAth N ..cceiiiiiieiceee ettt et 234
C.39 File pss/detail/algebEXPI.h.......ccccocveiiiiiiiiiieicieeee et 234
C.40 File pss/detail/activityStMEIc.cociieiieiieeiecieit e s 236

(normative) Foreign language data type bindingsccecevveoieniiiinienieieeeeee e 237
DLl C PIIMILIVE £ PCS.cureureeuieiereieieseesterteetestestesteesteseentesseeseenseeneesseessesseensesseensessesssessesssenns 237
D.2 C++ composite and user-defined tyPes.......cvveecveriecienieieri et 237
D3 SYStEMVEIIIOEZ «..eeeieiieieieeee ettt ettt ettt sttt st eneens 240

(informative) SOIULION SPACEcueuveviieuiieiiirieieetee ettt 241

(informative) HST UART €XamPIe......c.cccveviiriiriiiieieieeieeiteie ettt seesae et sre e sveessenseens 244

Copyright © 2017 Accellera. All rights reserved. xiii
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Xiv

Portable Test and Stimulus

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

PSS Early Adopter (EA): A Portable
Stimulus and Test Standard

NOTE—Some of the material in this EA version remains under active discussion by the PSS working group; conse-
quently, there may be substantive changes before the PSS 1.0 version is released.

1. Overview

This clause explains the purpose of this standard, describes its key concepts and considerations, details the
conventions used, and summarizes its contents.

The Portable Test and Stimulus Standard syntax is specified using Backus-Naur Form (BNF). The rest of
this Standard is intended to be consistent with the BNF description. If any discrepancies between the two
occur, the BNF formal syntax in Annex B shall take precedence.

1.1 Purpose

The Portable Test and Stimulus Standard defines a specification for creating a single representation of
stimulus and test scenarios, usable by a variety of users across different levels of integration under different
configurations, enabling the generation of different implementations of a scenario that run on a variety of
execution platforms, including, but not necessarily limited to, simulation, emulation, FPGA prototyping, and
post-Silicon. With this standard, users can specify a set of behaviors once, from which multiple
implementations may be derived.

1.2 Language design considerations

The Portable Test and Stimulus Specification describes a declarative domain-specific language (DSL),
intended for modeling scenario spaces of systems, generating test cases, and analyzing test runs. Scenario
elements and formation rules are captured in a way that abstracts from implementation details and is thus
reusable, portable, and adaptable. This specification also defines a C++ input format that is semantically
equivalent to the DSL, as shown in the following clauses (see also Annex C). The portable stimulus
specification captured either in DSL or C++ is herein referred to as PSS.

PSS borrows its core concepts from object-oriented programming languages, hardware-verification
languages, and behavioral modeling languages. PSS features native constructs for system notions, such as
data/control flow, concurrency and synchronization, resource requirements, and states and transitions. It also
includes native constructs for mapping these to target implementation artifacts.

Copyright © 2017 Accellera. All rights reserved. 1
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Introducing a new language has major benefits insofar as it expresses user intention that would be lost in
other languages. However, user tasks that can be handled well enough in existing languages should be left to
the language of choice, so as to leverage existing skill, tools, flows, and code bases. Thus, PSS focuses on
the essential domain-specific semantic layer and links with other languages to achieve other related
purposes. This eases adoption and facilitates project efficiency and productivity.

Finally, PSS builds on prevailing linguistic intuitions in its constructs. In particular, its lexical and syntactic
conventions come from the C/C++ family and its constraint and coverage language uses SystemVerilog
(IEEE Std 1800)' as a referent.

1.3 Modeling concepts

A PSS model is a representation of some view of a system’s behavior, along with a set of abstract flows. It is
essentially a set of class definitions augmented with rules constraining their legal instantiation. A model
consists of two types of class definitions: elements of behavior, called actions; and passive entities used by
actions, such as resources, states, and data-flow items, collectively called objects. The behaviors associated
with an action are specified as activities. Actions and object definitions may be encapsulated in components
to form reusable model pieces. All of these elements may also be encapsulated and extended in a package to
allow for additional reuse and customization.

A particular instantiation of a given PSS model is a called a scenario. Each scenario consists of a set of
action instances and data object instances, as well as scheduling constraints and rules defining the
relationships between them. The scheduling rules define a partial-order dependency relation over the
included actions, which determines the execution semantics. A consistent scenario is one that conforms to
model rules and satisfies all constraints.

Actions constitute the main abstraction mechanism in PSS. An action represents an element in the space of
modeled behavior. Actions may correspond directly to operations of the underlying system under test (SUT)
and test environment, in which case they are called atomic actions. Actions also use activities to encapsulate
flows of simpler actions, constituting some joint activity or scenario intention. As such, actions can be used
as top-level test intent or reusable test specification elements. Actions and objects have data attributes and
data constraints over them.

Actions define the rules for legal combinations in general, not relative to a specific scenario. These are stated
in terms of references to objects, having some role from the action’s perspective. Objects thus serve as data,
and control inputs and outputs of actions, or they are exclusively used as resources.

1.4 Test realization

A key purpose of PSS is to automate the generation of test cases and test suites. Tests for electronic systems
often involve code running on embedded controllers, exercising the underlying hardware and software
layers. Tests may involve code in hardware-verification languages (HVLs) controlling bus functional
models, as well as scripts, command files, data files, and other related artifacts. From the PSS model
perspective, these are called target files, and target languages, which jointly implement the test case for a
target platform.

The execution of a concrete scenario essentially consists of invoking its actions’ implementations, if any, in
their respective scheduling order. An action is invoked immediately after all its dependencies have
completed and subsequent actions wait for it to complete. Thus, actions that have the same set of
dependencies are logically invoked at the same time. Mapping atomic actions to their respective

nformation on references can be found in Clause 2.

2 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

implementation for a target platform is captured in one of three ways: as a sequence of calls to external
functions implemented in the target language; as parameterized, but uninterpreted, code segments expressed
in the target language; or as a C++ member function (for the C++ input format only).

PSS features a native mechanism for referring to the actual state of the system under test (SUT) and the
environment. Runtime values accessible to the generated test can be sampled and fed back into the model as
part of an action’s execution. These external values are sampled and, in turn, affect subsequent generation,
which can be checked against model constraints and/or collected as coverage. The system/environment state
can also be sampled during pre-run processing utilizing models and during post-run processing, given a run
trace.

Similarly, the generation of a specific test-case from a given scenario may require further refinement or
annotations, such as the external computation of expected results, memory modeling, and/or allocation
policies. For these, external models, software libraries, or dedicated algorithmic code in other languages or

tools may need to be employed. In PSS, the execution of these pre-run computations is defined using the
same scheme as described above, with the results linked in the target language of choice.

1.5 Conventions used
The conventions used throughout the document are included here.
1.5.1 Visual cues (meta-syntax)

The meta-syntax for the description of the syntax rules uses the conventions shown in Table 1.

Table 1—Document conventions

Visual cue Represents

bold The bold font is used to indicate key terms and punctuation, text that shall be typed exactly
as it appears. For example, in the following state declaration, the keyword “state” and spe-

(T3 1} [T}

cial characters “{” and “}” (and optionally “:” and/or *‘;”) shall be typed as they appear:
state identifier [: struct super spec] { { struct body item } } [;]

plain text The normal or plain text font indicates syntactic categories. For example, an identifier
needs to be specified in the following line (after the “state” key term):

state identifier [: struct_super_spec] { { struct body item } } [;]

italics The italics font in running text indicates a definition. For example, the following line
shows the definition of “activities™:

The behaviors associated with an action are specified as activities.

courier The courier font in running text indicates PSS, DSL, or C++ code. For example, the
following line indicates PSS code (for a state):

state power_state_s { int[0..4] val; };

[] square brackets Square brackets indicate optional items. For example, the struct_super_spec and (ending)
semicolon (;) are both optional in the following line:

state identifier [: struct_super_spec] { { struct body item } } [;]

Copyright © 2017 Accellera. All rights reserved. 3
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Table 1—Document conventions (Continued)

Visual cue Represents

{ } curly braces Curly braces ({ }) indicate items that can be repeated zero or more times. For example,
the following shows zero or more struct_body_items can be specified in this declaration:

state identifier [: struct_super_spec | { { struct body item } } [;]

| separator bar The separator bar (]) character indicates alternative choices. For example, the following
line shows the “input” or “output” key terms are possible values in a flow object reference:

input | output action data declaration

1.5.2 Notational conventions

The terms “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and “optional”
in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.

1.5.3 Examples

Any examples shown in this Standard are for information only and are only intended to illustrate the use of
PSS.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not effect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text
when initially defined.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

— Clause 4 defines the lexical conventions used in PSS.

— Clause 5 defines the PSS execution semantic concepts.

— Clause 6 details some specific C++ considerations in using PSS.
— Clause 7 highlights the PSS data types.

— Clause 8 - Clause 17 describe the PSS modeling constructs.

— Clause 18 highlights the Hardware/Software Interface (HSI).

— Annexes. Following Clause 18 are a series of annexes.

4 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

2. References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1800, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.z’ 3

The IETF Best Practices Document (for notational conventions) is available from the IETF web site:
https://www.ietf.org/rfc/rfc2119.txt.

ISO/IEC 14882:2011, Programming Languages—C++.4

“The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

3BEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

441SO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé¢, CH-1211, Genéve 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States
from the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).

Copyright © 2017 Accellera. All rights reserved. 5
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B1]° should be referenced for terms not defined in this clause.

3.1 Definitions
action: An element of behavior.

activity: An abstract, partial specification of a scenario that is used in a compound action to determine the
high-level intent and leaves all other details open.

atomic action: An action that corresponds directly to operations of the underlying system under test (SUT)
and test environment.

component: A structural entity, defined per type and instantiated under other components.
compound action: An action which is defined in terms of one or more sub-actions.

constraint: An algebraic expression relating attributes of model entities used to limit the resulting scenario
space of the model.

coverage: A metric to measure the percentage of possible scenarios that have actually been processed for a
given model.

exec block: Specifies the mapping of PSS scenario entities to its non-PSS implementation.

identifier: Uniquely name an object so it can be referenced.

inheritance: The process of deriving one model element from another of a similar type, but adding or mod-
ifying functionality as desired. It allows multiple types to share functionality which only needs to be speci-
fied once, thereby maximizing reuse and portability.

loop: A traversal region of an activity in which a set of sub-actions is repeatedly executed. Values for the
fields of the action are selected for each traversal of the loop, subject to the active constraints and resource
requirements present.

model: A representation of some view of a system’s behavior, along with a set of abstract flows.

object: A passive entity used by an action, such as resources, states, and data-flow items.

override: To replace one or all instances of an element of a given type with an element of a compatible type
inherited from the original type.

package: A way to group, encapsulate, and identify sets of related definitions, namely type declarations and
type extensions.

resource: A computational element available in the target environment that may be claimed by an action for
the duration of its execution.

3The number in brackets correspond to those of the bibliography in Annex A.

6 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

root action: An action designated explicitly as the entry point for the generation of a specific scenario. Any
action in a model can serve as the root action of some scenario.

scenario: A particular instantiation of a given PSS model.
target file: Contains textual content to be used in realizing the test intent.

target language: The language used to realize a specific unit of test intent, e.g., ANSI C, assembly lan-
guage, Perl.

target platform: The execution platform on which test intent is executed.

type extension: The process of adding additional functionality to a model element of a given type, thereby
maximizing reuse and portability. As opposed to inheritance, extension does not create a new type.

3.2 Acronyms and abbreviations

API application programming interface

DSL domain-specific language

HSI Hardware/Software Interface

PI procedural interface

PSS Portable Stimulus language Specification

SUT system under test

Copyright © 2017 Accellera. All rights reserved. 7
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

4. Lexical conventions

PSS borrows its lexical conventions from the C language family.

4.1 Comments
The token /* introduces a comment, which terminates with the first occurrence of the token */. The C++

comment delimiter // is also supported and introduces a comment which terminates at the end of the
current line.

4.2 |dentifiers

An identifier is a sequence of letters, digits, and underscores; it is used to give an object a unique name so it
can be referenced. Identifiers are case-sensitive. A meta-identifier can appear in syntax definitions using the
form: construct_name_identifer, e.g., action_identifier. See also B.13.

4.3 Keywords

PSS reserves the keywords listed in Table 2.

Table 2—PSS keywords

abstract action activity bind bins bit
bool buffer chandle class component constraint
coverpoint coverspec cross dynamic else enum
exec export extend false file foreach
if import inout input inside instance
int lock option output override package
parallel pool rand repeat resource schedule
select sequence share solve state stream
string struct symbol target true type
typedef unique void while with

8 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

5. Execution semantic concepts

5.1 Overview

A PSS test scenario is identified given a PSS model and an action type designated as the root action. The
execution of the scenario consists essentially in executing a set of actions defined in the model, in some
(partial) order. In the case of atomic actions, the mapped behavior of any exec body clauses (see 17.8.1) is
invoked in the target execution environment, while for compound actions the behaviors specified by their
activity statements are executed.

All action executions observed in a test run either correspond to those explicitly called by traversed activities
or are implicitly introduced to establish flows that are correct with respect to the model rules. The order in
which actions are executed shall conform to the flow dictated by the activities, starting from the root action,
and shall also be correct with respect to the model rules. Correctness involves consistent resolution of
actions’ inputs, outputs, and resource references, as well as satisfaction of scheduling constraints. Action
executions themselves shall reflect data-attribute assignments that satisfy all constraints.

5.2 Assumptions of abstract scheduling

Guarantees provided by PSS are based on general capabilities that test realizations need to have in any target
execution environment. The following are assumptions and invariants from the abstract semantics
viewpoint.

5.2.1 Starting and ending action executions

PSS semantics assumes target-mapped behavior associated with atomic actions can be invoked in the
execution environment at arbitrary points in time, unless model rules (such as state or data dependencies)
restrict doing so. It also assumes target-mapped behavior of actions can be known to have completed.

PSS semantics makes no assumptions on the duration of the execution of the behavior. It also makes no
assumptions on the mechanism by which an implementation would monitor or be notified upon action
completion.

5.2.2 Concurrency

PSS semantics assumes actions can be invoked to execute concurrently, under restrictions of model rules
(such as resource contentions).

PSS semantics makes no assumptions on the actual threading framework employed in the execution
environment. In particular, a target may have a native notion of concurrent tasks, as in SystemVerilog
simulation; it may provide native asynchronous execution threads and means for synchronizing them, such
as embedded code running on multi-core processors; or it may implement time sharing of native execution
thread(s) in a preemptive or cooperative threading scheme, as is the case with a runtime operating system
kernel. PSS semantics does not distinguish between these.

5.2.3 Synchronized invocation

PSS semantics assumes action invocations can be synchronized, i.e., logically starting at the same time. In
practice there may be some delay between the invocations of synchronized actions. However, the “sync-
time” overhead is (at worse) relative to the number of actions that are synchronized and is constant with
respect to any other properties of the scenario or the duration of any specific action execution.

Copyright © 2017 Accellera. All rights reserved. 9
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

PSS semantics makes no assumptions on the actual runtime logic that synchronizes native execution threads
and puts no absolute limit on the “sync-time” of synchronized action invocations.

5.3 Scheduling concepts

PSS execution semantics defines the criteria for legal runs of scenarios. The criterion covered in this chapter
is stated in terms of scheduling dependency—the fundamental scheduling relation between action-
executions. Ultimately, scheduling is observed as the relative order of behaviors in the target environment
per the respective mapping of atomic actions. This section defines the basic concepts, leading up to the
definition of sequential and parallel scheduling of action-executions.

5.3.1 Preliminary definitions

a) An action-execution of an atomic action type is the execution of its exec-body block,® with values
assigned to all of its parameters (reachable attributes). The execution of a compound action consists
in executing the set of atomic actions it contains, directly or indirectly. For more on execution
semantics of compound actions and activities, see Clause 12.

An atomic action-execution has a specific start-time—the time in which its exec-body block is
entered, and end-time—the time in which its exec-body block exits (the test itself does not complete
successfully before all actions that have started complete themselves). The start-time of an atomic
action-execution is assumed to be under the direct control of the PSS implementation. In contrast,
the end-time of an atomic action-execution, once started, depends on its implementation in the target
environment, if any (see 5.2.1).

The difference between end-time and start-time of an action-execution is its duration.

b) A scheduling dependency is the relation between two action-executions, by which one necessarily
starts after the other ends. Action-execution b has a scheduling dependency on a if b’s start has to
wait for a’s end. The temporal order between action-executions with a scheduling dependency
between them shall be guaranteed by the PSS implementation regardless of their actual duration or
that of any other action-execution in the scenario. Taken as a whole, scheduling dependencies con-
stitute a partial order over action-executions ,which a PSS solver determines and a PSS scheduler
obeys.

Consequently, the lack of scheduling dependency between two action-executions (direct or indirect)
means neither one needs to wait for the other. Having no scheduling dependency between two
actions-executions implies they may (or may not) overlap in time.

¢) Action-executions are synchronized (scheduled to start at the same time) if they all have the exact
same scheduling dependencies. No delay shall be introduced between their invocations, except a
minimal constant delay (see 5.2.3).

d) Two or more sets of action-executions are independent (scheduling-wise) if there is no scheduling
dependency between any two action-executions across the sets. Note that within each set, there may
be scheduling-dependencies.

e) Within a set of action-executions, the initial ones are those without scheduling dependency on any
other action-execution in the set. The final action-executions within the set are those in which no
other action-execution within the set depends.

5.3.2 Sequential scheduling

Action-executions a and b are scheduled in sequence if b has a scheduling dependency on a. Two sets of
action-executions, S; and S,, are scheduled in sequence if every initial action-execution in S, has scheduling

6Throughout this section exec-body block is referred to in the singular, although it may be the aggregate of multiple exec-body clauses

in different locations in PSS source code (e.g. in different extensions of the same action type).

10 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

dependency on every final action-execution in S,. Generally, sequential scheduling of N action-execution
sets Sj .. Sy is the scheduling dependency of every initial action-execution in S; on every final action-
execution in Sj_; for every i <= N.

For examples of sequential scheduling, see 12.3.2.3.
5.3.3 Parallel scheduling

N sets of action-executions S; .. Sy, are scheduled in parallel if the following two conditions hold.

— All initial action-executions in all N sets are synchronized (i.c., all have the exact same set of sched-
uling dependencies).

— §j .. §, are all independent scheduling-wise with respect to one another (i.e., there are no scheduling
dependencies across any two sets Sj and Sj).

For examples of parallel scheduling, see 12.3.3.3.

Copyright © 2017 Accellera. All rights reserved. 11
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

6. C++ specifics
All PSS/C++ types are defined in the pSS namespace and are the only types defined by this specification.

Nested within the pss namespace is the detail namespace. Types defined within the detail
namespace are documented to capture the intended behavior of the PSS/C++ types.

PSS/C++ object hierarchies are managed via the SCOpe object, as shown in Syntax 1.

class scope : public detail::ScopeBase {
public:

/// Constructor

scope (const char* name);

/// Constructor

scope (const std::string& name);

/// Constructor

template < class T > scope (T* s);

/// Destructor

~scope();

}s

Syntax 1—C++: scope declaration

Most PSS/C++ class constructors take Scope as their first argument; this argument is typically passed the
name of the object as a string.

The constructor of any user-defined classes that inherit from a PSS class shall always take const scope&
as an argument and propagate the this pointer to the parent scope. The class type shall also be declared
using the type_dec <> template object, as shown in Syntax 2.

template<class T>
class type_decl : public detail::TypeDeclBase {
public:
type_decl();
T* operator-> ();
T& operator™ ();
15

Syntax 2—C++: type declaration

Example 1 shows an example of this usage.

12 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

class C1 : public component {
public:
Cl (const scope& s) : component (this) {}

};
type_decl<Cl> C1_decl;

Example 1—C++: type declaration

The PSS_CTOR convenience macro for constructors:
#define PSS_CTOR(C,P) public: C (const scope& p) : P (this) {}

can also be used to simplify class declarations, as shown in Example 2.

class C2 : public component {
PSS_CTOR(C2,component) ;

};
type_decl<C2> C2_decl;

Example 2—C++: Simplifying class declarations

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

13

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

7. Data types

7.1 Scalars

PSS supports two 2-state scalar data types. These fundamental scalar data types are summarized in Table 3,
along with their default value domain.

Table 3—Scalar data types

Data type Default domain Signed/Unsigned
int -2°31 .. (2"31-1) Signed
bit 0..1 Unsigned

7.1.1 DSL syntax

The DSL syntax for scalars is shown in Syntax 3.

integer_type ::= integer _atom_type [[expression [
: expression
| , open_range value {, open_range value }
| .. expression { , open_range value }]]]
integer _atom_type ::=
int
| bit

open_range value ::= expression [.. expression]

Syntax 3—DSL.: Scalar data declaration

The following also apply.
a) Scalar values of bt type are unsigned values. Scalar values of Int type are signed.

b) Integer literal constants can be specified in decimal, hexadecimal, octal, or binary format by follow-
ing SystemVerilog 2-state variable conventions (*h7F, "b111, 7) or C-style hexadecimal notation
(OX7¥).

c) 4-state values are not supported. If 4-state values are passed into the PSS model via the procedural
interface (PI) (see 17.2), any X or Z values are converted to O.

7.1.2 C++ syntax

Contrasting with 7.1.1, b, C++ supports decimal, hexadecimal, and octal literals (e.g., 1, Ox1, and 001,
respectively).

The corresponding C++ syntax for Syntax 3 is shown in Syntax 4, Syntax 5, Syntax 6, Syntax 7, Syntax 8,
Syntax 9, Syntax 10, Syntax 11, and Syntax 12.

14 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

using bit = unsigned int;

Syntax 4—C++: bit declaration

class width : public detail::WidthBase {
public:
/// \Declare width as a range of bits
width (const std::size t& lhs, const std::size t& rhs);
/// \Declare width in bits
width (const std::size t& size);
/// \copy constructor
width (const width& a_width);

¥

Syntax 5—C++: Scalar width declaration

template <class T = int>
class range : public detail::RangeBase {
public:
/// Declare a range of values
range (const T& lhs, const T& rhs);
/// Declare a single value
range (const T& value);
/Il Copy constructor
range (const range& a_range);
/// Function chaining to declare another range of values
range& operator() (const T& lhs, const T& rhs);
/// Function chaining to declare another single value
range& operator() (const T& value);

}; // class range

Syntax 6—C++: Scalar range declaration

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

15

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

/// Primary template for enums and structs
template <class T>
class rand_attr : public detail::RandAttrTBase {
public:

/// Constructor

rand_attr (const scope& name);

/// Constructor and initial value

rand_attr (const scope& name, const T& init_val);

/Il Copy constructor

rand_attr(const rand_attr<T>& other);

/I Struct access

T* operator-> ();

/I Struct access

T& operator™ ();

/// enum access

T& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail:: AlgebExpr& value);

|5

16

Syntax 7—C++: Scalar rand enums and structs declaration

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard

June 14, 2017

/// Template specialization for scalar rand int
template <>
class rand_attr<int> : public detail::RandAttrIntBase {
public:
/// Constructor
rand_attr (const scope& name);
/// Constructor and initial value
rand_attr (const scope& name, const int& init_val);
/Il Constructor defining width
rand_attr (const scope& name, const width& a_width);
/Il Constructor defining width and initial value
rand_attr (const scope& name, const width& a_width, const int& init_val);
/Il Constructor defining range
rand_attr (const scope& name, const range<int>& a_range);
/Il Constructor defining range and initial value
rand_attr (const scope& name, const range<int>& a_range, const int& init_val);
/Il Constructor defining width and range
rand_attr (const scope& name, const width& a_width, const range<int>& a_range);
/Il Constructor defining width and range and initial value

rand_attr (const scope& name, const width& a_width, const range<int>& a_range,
const int& init_val);

/Il Copy constructor

rand_attr(const rand_attr<int>& other);

/Il Access to underlying data

int& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpr& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail:: AlgebExpr& value);
detail::ExecStmt operator>>= (const detail:: AlgebExpr& value);
detail::ExecStmt operator&= (const detail:: AlgebExpr& value);
detail::ExecStmt operator|= (const detail:: AlgebExpr& value);

|5

Syntax 8—C++: Scalar rand int declaration

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

17

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

/// Template specialization for scalar rand bit
template <>
class rand_attr<bit> : public detail::RandAttrBitBase {
public:
/// Constructor
rand_attr (const scope& name);
/// Constructor and initial value
rand_attr (const scope& name, const bit& init_val);
/Il Constructor defining width
rand_attr (const scope& name, const width& a_width);
/Il Constructor defining width and initial value
rand_attr (const scope& name, const width& a_width, const bit& init_val);
/Il Constructor defining range
rand_attr (const scope& name, const range<bit>& a_range);
/Il Constructor defining range and initial value
rand_attr (const scope& name, const range<bit>& a_range, const bit& init val);
/Il Constructor defining width and range
rand_attr (const scope& name, const width& a_width, const range<bit>& a_range);
/Il Constructor defining width and range and initial value

rand_attr (const scope& name, const width& a_width, const range<bit>& a_range,
const bit& init_val);

/Il Copy constructor

rand_attr(const rand_attr<bit>& other);

/Il Access to underlying data

bit& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail:: AlgebExpr& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail:: AlgebExpr& value);
detail::ExecStmt operator>>= (const detail:: AlgebExpr& value);
detail::ExecStmt operator&= (const detail:: AlgebExpr& value);
detail::ExecStmt operator|= (const detail:: AlgebExpr& value);

|5

Syntax 9—C++: Scalar rand bit declaration

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard

June 14, 2017

/// Primary template for enums and structs
template < class T>
class attr : public detail:: AttrTBase {
public:

/// Constructor

attr (const scope& s);

/// Constructor with initial value

attr (const scope& s, const T& init_val);

/Il Copy constructor

attr(const attr<T>& other);

/I Struct access

T* operator-> ();

/I Struct access

T& operator™ ();

/// enum access

T& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail:: AlgebExpr& value);

|5

Syntax 10—C++: Scalar enums and structs declaration

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

19

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

/// Template specialization for scalar int

template <>

class attr<int> : public detail::AttrIntBase {

public:
/// Constructor
attr (const scope& s);
/// Constructor with initial value
attr (const scope& s, const int& init_val);
/Il Constructor defining width
attr (const scope& s, const width& a_width);
/Il Constructor defining width and initial value
attr (const scope& s, const width& a_width, const int& init_val);
/Il Constructor defining range
attr (const scope& s, const range<int>& a_range);
/Il Constructor defining range and initial value
attr (const scope& s, const range<int>& a_range, const int& init_val);
/// Constructor defining width and range
attr (const scope& s, const width& a_width, const range<int>& a_range);
/Il Constructor defining width and range and initial value
attr (const scope& s, const width& a_width, const range<int>& a_range, const int& init_val);
/Il Copy constructor
attr(const attr<int>& other);
/Il Access to underlying data
int& val();
/Il Exec statement assignment
detail::ExecStmt operator= (const detail:: AlgebExpr& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail:: AlgebExpr& value);
detail::ExecStmt operator>>= (const detail:: AlgebExpr& value);
detail::ExecStmt operator&= (const detail:: AlgebExpr& value);
detail::ExecStmt operator|= (const detail:: AlgebExpr& value);

|5

20

Syntax 11—C++: Scalar int declaration

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

/// Template specialization for scalar bit
template <>
class attr<bit> : public detail::AttrBitBase {
public:
/// Constructor
attr (const scope& s);
/// Constructor with initial value
attr (const scope& s, const bit& init_val);
/Il Constructor defining width
attr (const scope& s, const width& a_width);
/Il Constructor defining width and initial value
attr (const scope& s, const width& a_width, const bit& init_val);
/Il Constructor defining range
attr (const scope& s, const range<bit>& a_range);
/Il Constructor defining range and initial value
attr (const scope& s, const range<bit>& a_range, const bit& init_val);
/// Constructor defining width and range
attr (const scope& s, const width& a_width, const range<bit>& a_range);

/Il Constructor defining width and range and initial value

/Il Copy constructor

attr(const attr<bit>& other);

/Il Access to underlying data

bit& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail:: AlgebExpr& value);
detail::ExecStmt operator+= (const detail::AlgebExpr& value);
detail::ExecStmt operator-= (const detail::AlgebExpr& value);
detail::ExecStmt operator<<= (const detail:: AlgebExpr& value);
detail::ExecStmt operator>>= (const detail:: AlgebExpr& value);
detail::ExecStmt operator&= (const detail:: AlgebExpr& value);
detail::ExecStmt operator|= (const detail:: AlgebExpr& value);

|5

attr (const scope& s, const width& a_width, const range<bit>& a_range, const bit& init_val);

Syntax 12—C++: Scalar bit declaration

7.1.3 Examples
The DSL and C++ scalar data examples are shown in-line within this section.
Declare a signed variable that is 32-bits wide.

DSL: int a;
C++: attr<int> a{"a"};

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

21

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Declare a signed variable that is 5-bits wide.

DSL: int [4:0] a;
C++: attr<int> a {"a", width (4, 0) };

Declare an unsigned variable that is 5-bits wide.

DSL: bit [0..31] b;
C++: attr<bit> b {"b", range <bit> (0,31) } ;

Declare an unsigned variable that is 5-bits wide and has the valid values 1, 2, and 4.

DSL: bit [1,2,4] c;
C++: attr<bit> c { "c", range <bit> (1)(2)(4) }:

7.2 Booleans

The PSS language supports a built-in Boolean type, with the type name bool. The bool type has two
enumerated values true (=1) and false (=0).

C++ uses attr<bool> or rand_attr<bool>.

7.3 enums
7.3.1 DSL syntax

The enum declaration is consistent with C/C++ and is a subset of SystemVerilog, as shown in Syntax 13.

enum_declaration ::= enum enum_identifier { [enum_item {, enum item }]} [;]

enum_item ::= identifier [= constant_expression]

Syntax 13—DSL: enum declaration

7.3.2 C++ syntax
The corresponding C++ syntax for Syntax 13 is shown in Syntax 14.

The PSS_ENUM macro is used to encapsulate the PSS_CTOR macro and enum literal value declarations,
using C-style enum declaration syntax.

22 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Declare an enumeration
class enumeration : public detail::EnumerationBase {
public:
/// Constructor
enumeration (const scope& s);
/// Default Constructor
enumeration ();
/// Destructor
~enumeration ();
protected:
class _ pss_enum_values {
public:
__pss_enum_values (enumeration* context, const std::string& s);
15
template <class T>
enumeration& operator=(const T& t);
¥
#define PSS_ENUM(class_name, base class, ...) \
public: \
\
class_name (const scope& p) : base class (this) { } \
\
enum __ pss_##class name {\
~ VA ARGS \
$5\
\
__pss_enum_values _ pss_enum_values {this,# VA ARGS };\
\
class name() {} \
class_name (const __ pss_##class name e) {\
enumeration::operator=(e); \
3\
\
class_name& operator=(const __ pss_##class name e){ \
enumeration::operator=(e); \

return *this; \

Syntax 14—C++: enum declaration

7.3.3 Examples

Examples of enum usage are shown in Example 3 and Example 4.

Copyright © 2017 Accellera. All rights reserved. 23
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};

component uart_c {
action configure {
rand config_modes_e mode;
constraint {mode = UNKNOWN};

}:

Example 3—DSL: enum data type

The corresponding C++ example for Example 3 is shown in Example 4.

class config_modes_e : public enumeration {
PSS_ENUM(config_modes_e, enumeration, UNKNOWN, MODE_A=10, MODE_B=20);
}:

type_decl<config_modes_e> config_modes_e _decl;

class uvart_c : public component {
public:
PSS_CTOR(uart_c, component);
class configure : public action {
PSS_CTOR(configure, action);
rand_attr<config_modes_e> mode{''mode'};
constraint {mode != config_modes_e: :UNKNOWN};
}:
type_decl<configure> configure_decl;
}:

type_decl<uart_c> uart_c_decl;

Example 4—C++: enum data type

7.4 Strings

The PSS language supports a built-in string type with the type name string.

7.4.1 C++ syntax

C++ uses attr<std: :string> (see Syntax 15) or rand_attr<std: :string> (see Syntax 16) to

represent strings.

24

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard

June 14, 2017

/// Template specialization for scalar string
template <>
class attr<std::string> : public detail:: AttrStringBase {
public:

/// Constructor

attr (const scope& s);

/// Constructor and initial value

attr (const scope& s, const std::string& init_val);

/Il Copy constructor

attr(const attr<std::string>& other);

/Il Access to underlying data

std::string& val();

/Il Exec statement assignment

detail::ExecStmt operator= (const detail:: AlgebExpr& value);

|5

Syntax 15—C++: Scalar string declaration

/// Template specialization for scalar rand string
template <>

public:
/// Constructor
rand_attr (const scope& name);
/// Constructor and initial value
rand_attr (const scope& name, const std::string& init_val);
/Il Copy constructor
rand_attr(const rand_attr<std::string>& other);
/Il Access to underlying data
std::string& val();
/// Exec statement assignment

detail::ExecStmt operator= (const detail::AlgebExpr& value);
15

class rand_attr<std::string> : public detail::RandAttrStringBase {

Syntax 16—C++: Scalar rand string declaration

7.4.2 Examples

The value of a random string-type field can be constrained with equality constraints and can be compared

using equality constraints, as shown in Example 5 and Example 6.

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

25

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct string_s {
rand bit a;
rand string S;

constraint {

if (a==1) {
s == "FO0";
} else {
s == "BAR";
}

}
}

Example 5—DSL.: String data type

The corresponding C++ example for Example 5 is shown in Example 6.

struct string_s : public structure {

PSS_CTOR(string_s, structure)
rand_attr<bit> a {a};
rand_attr<std::string> s {'"s"};

constraint cl1 { "cl",
it _then_else {
=1,
"FOO",
== "BAR"

w0 o
Il
It

}
¥
¥

type_decl<string_s> string_s_decl;

Example 6—C++: String data type

7.5 chandles

The chandle type (pronounced “see-handle”) represents an opaque handle to a foreign-language pointer. A
chandle is used with the PI (see 17.2) to store foreign-language pointers in the PSS model and pass them to
foreign-language functions and methods. See Annex D for more information about the foreign-language PI.

Example 7 shows a struct containing a chandle field that is initialized by the return of a foreign-
language function.

import chandle do_init();

struct info_s {
chandle ptr;

exec pre_solve {
ptr = do_init(Q);
}
}

Example 7—DSL: chandle data type

26 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

7.6 Structs

A struct declares a collection of data items and constraints that relate the values of the data items, as shown
in Syntax 17 or Syntax 18.

7.6.1 DSL syntax

struct_declaration ::= struct_type identifier [: struct_identifier] { { struct_body_item } } [;]
struct_type ::=
struct
| struct_qualifier
struct_qualifier ::=
buffer
| stream
| state
| resource
struct_body_item ::=
constraint_declaration
| struct_field declaration
| typedef declaration
| bins_declaration
| coverspec_declaration
| exec_block stmt
struct_field declaration ::= [struct_field modifier] data_declaration

struct_field_modifier ::= rand

Syntax 17—DSL.: struct declaration

A struct is a pure-data type; it does not declare an operation sequence. A struct declaration can specify a
struct_identifier, a previously defined struct type from which the new type inherits its members, by using a
colon (), as in C++. In addition, structs can

— include constraints (see 13.1) or bins (see 14.7);

— represent data flow objects (see Clause 9) and resources (see Clause 10).

The following also apply.

a) Data elements within a struct may be declared to be a specific type, and may optionally include the
rand keyword to indicate the element should be randomized when the overall struct is randomized
(as shown in Example 8).

b) Applying the rand modifier to a field of a struct type causes all fields (and sub-fields) of the struct
that are qualified as rand to be randomized when the struct is randomized.

¢) Fields (and sub-fields) of the struct that are not qualified as rand are not randomized when the
struct is randomized.

7.6.2 C++ syntax

In C++, structures shall derive from the structure class.

Copyright © 2017 Accellera. All rights reserved. 27
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

The corresponding C++ syntax for Syntax 17 is shown in Syntax 18.

/// Declare a structure
class structure : public detail::StructureBase {
protected:
/// Constructor
structure (const scope& s);
/// Destructor
~structure();
public:
/// In-line exec block
virtual void pre_solve();
/// In-line exec block

virtual void post_solve();

3

Syntax 18—C++: struct declaration

7.6.3 Examples

Struct examples are shown in Example 8 and Example 9.

struct axi4_trans_req {
rand bit[31:0] axi_addr;
rand bit[31:0] axi_write_data;
rand bit is write;
rand bit[3:0] prot;
rand bit[1:0] sema4;

Example 8—DSL.: Struct with rand modifier

struct axi4_trans_req :
PSS_CTOR(axi4_trans_req, structure);
rand_attr<bit> axi_addr { "axi_addr",

¥

public structure {

rand_attr<bit> axi_write_data { "axi_write_data", width {31, 0} };
rand_attr<bit> is_write {"is_write" };

rand_attr<bit> prot { "prot", width {3, 0} };

rand_attr<bit> semad4 { "semad", width {1,0} };

type_decl<axi4_trans_req> axi4_trans_req_decl;

width {31,0} }:

Example 9—C++: Struct with rand modifier

7.7 User-defined data types

The typedef statement declares a user-defined type name in terms of an existing data type, as shown in

Syntax 19.

28 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

7.7.1 DSL syntax

typedef declaration ::= typedef data_type identifier ;

Syntax 19—DSL.: User-defined type declaration

7.7.2 C++ syntax
C++ uses the built-in typedeT construct.
7.7.3 Examples

typedef examples are shown in Example 10 and Example 11.

typedef bit[31:0] uint32_t;
Example 10—DSL.: typedef

typedef unsigned int uint32_t;

Example 11—C++: typedef

7.8 Arrays
PSS supports fixed-sized arrays of scalar data types, and arrays of structs and components.
7.8.1 C++ syntax

The corresponding C++ syntax for arrays is shown in Syntax 20, Syntax 21, Syntax 22, Syntax 23,
Syntax 24, Syntax 25, and Syntax 26.

/// Declare an array
namespace pss {

template < class T>

using vec = std::vector <T>;

}

Syntax 20—C++: array declaration

Copyright © 2017 Accellera. All rights reserved. 29
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

/// Template specialization for array of rand ints
template <>
class rand_attr<vec<int>> : public detail::RandAttrVecIntBase {

public:

10

15

20

25

30

35

40

45

50

55

/Il Constructor defining array size
rand_attr(const scope& name, const std::size t count);
/Il Constructor defining array size and element width
rand_attr(const scope& name, const std::size t count, const width& a_width);
/Il Constructor defining array size and element range
rand_attr(const scope& name, const std::size t count, const range<int>& a_range);
/// Constructor defining array size and element width and range
rand_attr(const scope& name, const std::size t count,
const width& a_width, const range<int>& a_range);
/Il Access to specific element
rand_attr<int>& operator[](const std::size_t idx);
/// Constraint on randomized index
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);
/Il Get size of array
std::size_t size() const;
/// Constraint on sum of array

detail:: AlgebExpr sum() const;
15

30

Syntax 21—C++: Arrays of rand ints

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

/// Template specialization for array of rand bits
template <>
class rand_attr<vec<bit>> : public detail::RandAttrVecBitBase {
public:
/Il Constructor defining array size
rand_attr(const scope& name, const std::size t count);
/Il Constructor defining array size and element width
rand_attr(const scope& name, const std::size t count,
const width& a_width);
/// Constructor defining array size and element range
rand_attr(const scope& name, const std::size t count,
const range<bit>& a_range);
/// Constructor defining array size and element width and range
rand_attr(const scope& name, const std::size t count,
const width& a_width, const range<bit>& a_range);
/Il Access to specific element
rand_attr<bit>& operator[](const std::size_t idx);
/// Constraint on randomized index
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);
!l Get size of array
std::size_t size() const;
/// Constraint on sum of array

detail:: AlgebExpr sum() const;
15

Syntax 22—C++: Arrays of rand bits

/I Template specialization for arrays of rand enums and arrays of rand structs
template <class T>
class rand_attr<vec<T>>: public detail::RandAttrVecTBase {
public:
rand_attr(const scope& name, const std::size t count);
rand_attr<T>& operator[](const std::size t idx);
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);
std::size_t size() const;
15
template < class T >

using rand_attr vec = rand_attr< vec <T> >;

Syntax 23—C++: Arrays of rand enums and rand structs

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

31

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

/// Template specialization for array of ints
template <>
class attr<vec<int>> : public detail::AttrVecIntBase {
public:
/Il Constructor defining array size
attr(const scope& name, const std::size_t count);
/Il Constructor defining array size and element width
attr(const scope& name, const std::size_t count,
const width& a_width);
/// Constructor defining array size and element range
attr(const scope& name, const std::size t count,
const range<int>& a_range);
/// Constructor defining array size and element width and range
attr(const scope& name, const std::size_t count,
const width& a_width, const range<int>& a_range);
/Il Access to specific element
attr<int>& operator[](const std::size_t idx);
/// Constraint on randomized index
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);
/Il Get size of array
std::size_t size() const;
/// Constraint on sum of array

detail:: AlgebExpr sum() const;
15

32

Syntax 24—C++: Arrays of ints

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

3

template <>
class attr<vec<bit>> : public detail:: AttrVecBitBase {
public:

/// Template specialization for array of bits

/Il Constructor defining array size
attr(const scope& name, const std::size_t count);
/Il Constructor defining array size and element width
attr(const scope& name, const std::size_t count,
const width& a_width);
/// Constructor defining array size and element range
attr(const scope& name, const std::size t count,
const range<bit>& a_range);
/// Constructor defining array size and element width and range
attr(const scope& name, const std::size_t count,
const width& a_width, const range<bit>& a_range);
/Il Access to specific element
attr<bit>& operator[](const std::size_t idx);
/// Constraint on randomized index
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);
/Il Get size of array
std::size_t size() const;
/// Constraint on sum of array

detail:: AlgebExpr sum() const;

Syntax 25—C++: Arrays of bits

3

public:

/// Template specialization for arrays of enums and arrays of structs
template <class T>

class attr<vec<T>>: public detail::AttrVecTBase {

attr(const scope& name, const std::size t count);
attr<T>& operator[](const std::size_t idx);
detail:: AlgebExpr operator[](const detail::AlgebExpr& idx);

std::size_t size() const;

template < class T >

using attr_vec = attr< vec <T> >;

Syntax 26—C++: Arrays of enums and structs

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

33

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

7.8.2 Examples

Examples of fixed-size array declarations are shown in Example 12 and Example 13.

int fixed_sized_arr [16]; // array of 16 signed integers
bit [7:0] byte_arr [256]; // array of 256 bytes
route east_routes [8]; // array of 8 route structs

Example 12—DSL: Fixed-size arrays

// array of 16 signed integers

attr_vec <int> fixed_sized_arr { "fixed_size_arr', 16 };
// array of 256 bytes

attr_vec <bit> byte _arr { "byte arr', 256, width{ 7, 0 } };
// array of 8 route structs

attr_vec <route> east_routes {' east_routes", 8 };

Example 13—C++: Fixed-size arrays

7.8.3 Properties

Arrays of scalar quantities provide properties, such as sum and size (see 7.8.3.1 and 7.8.3.2), that may be
used in constraint expressions.

7.8.3.1 Sum

The sum property shall return the sum of all elements in the array.
7.8.3.2 Size

The size property shall return the number of elements in the array.
7.8.3.3 Examples of property usage

The sum property shown in Example 14 and Example 15 constrains the element values of an array of
scalars.

bit [7:0] data [4];
constraint data_c {
data.sum > 0 && data.sum < 1000;

}

Example 14—DSL: sum property of an array

attr_vec<bit> data {"'data", 4, width {7,0} }:
constraint data_c { data.sum() > 0 && data.sum() < 1000 };

Example 15—C++: sum property of an array

The size property shown in Example 16 and Example 17 constrains the number of elements in an array of
scalars.

34 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

bit [7:0] data [4];
constraint data_c {
data.size < 10;

}

Example 16—DSL: size property of an array

attr_vec<bit> data {"'data'", 4, width {7,0} }:
constraint data_c { data.size() < 10 };

Example 17—C++: size property of an array

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

35

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

8. Actions

Actions are a key abstraction unit in PSS. Actions serve to decompose scenarios into elements whose
definition can be reused in many different contexts. Along with their intrinsic properties, actions also
encapsulate the rules for their interaction with other actions and the ways to combine them in legal
scenarios. Atomic actions may be composed into higher-level actions, and, ultimately, to top-level test
actions, using activities (see Clause 12). The activity of a compound action specifies the intended schedule
of its sub-actions, their object binding, and any constraints. Activities are a partial specification of a
scenario: determining their abstract intent and leaving other details open.

Actions prescribe their possible interactions with other actions indirectly, by using flow and resource
objects. Flow object references specify the action’s inputs and outputs and resource object references specify
the action’s resource claims.

By declaring a reference to an object, an action determines its relation to other actions that reference the very
same object without presupposing anything specific about them. For example, one action may reference a
data-flow object of some type as its input, which another action references as its output. By referencing the
same object, the two actions necessarily agree on its properties without having to know about each other.
Each action may constrain the attributes of the object. In any consistent scenario, all constraints need to
hold; thus, the requirements of both actions are satisfied.

Actions may be atomic, in which case their implementation is supplied via an exec block (see 17.1) or they
may be compound, in which case they contain an activity (see Clause 12) that instantiates and schedules
other actions. A single action can have multiple implementations in different packages, so the actual
implementation of the action is determined by which package is used.

An action is declared using the action keyword and an action_identifier, as shown in Syntax 27. See also
Syntax 28.

8.1 DSL syntax

action_declaration ::= [abstract] action action_identifier [action_super_spec]
{ { action_body item } }[;]

action_super_spec ::= : type_identifier
action_body item ::=
activity declaration

| overrides declaration

| constraint declaration

| action field declaration

| bins_declaration

| symbol _declaration

| coverspec_declaration

| exec_block stmt

Syntax 27—DSL.: action declaration

An action declaration optionally specifies an action_super_spec, a previously defined action type from
which the new type inherits its members.

36 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

The following also apply.

a) Theactivity _declarationand exec_block stmt action body items are mutually exclu-
sive. An atomic action may specify exec_block_stmt items; it shall not specify activity -
declaration items. A compound action, which contains instances of other actions, shall not
specify exec_block_stmt items.

b) An abstract action may be declared as a template that defines a base set of field attributes and
behavior from which other actions may be extended. The extended actions may be instantiated like
any other action. Abstract actions shall not be instantiated directly.

8.2 C++ syntax
Actions are declared using the action class.

The corresponding C++ syntax for Syntax 27 is shown in Syntax 28.

/// Declare an action
class action : public detail::ActionBase {
protected:
/Il Constructor
action (const scope& s);
/// Destructor
~action();
public:
rand_attr<component*>& comp();

}; // class action

Syntax 28—C++: action declaration

8.3 Examples

For an example of using an action, see 12.2.3.

Copyright © 2017 Accellera. All rights reserved. 37
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

9. Flow objects

A flow object represents incoming or outgoing data/control flow for actions, or their pre-condition and post-
condition. A flow object is one which can have two modes of reference by actions: input and output.

9.1 Buffer objects

Buffer objects represent data items in some persistent storage that can be written and read. Once their
writing is completed, they can be read as needed. Typically, buffer objects represent data or control buffers
in internal or external memories. See Syntax 29 or Syntax 30.

9.1.1 DSL syntax

buffer identifier [: struct_super spec | { { struct body item } } [;]

Syntax 29—DSL.: buffer declaration

The following also apply.

a) Note that the buffer type does not imply any specific layout in memory for the specific data being
stored.

b) Buffer types can inherit from previously defined unqualified structs or buffers.

¢) An action that inputs a buffer object shall be bound (connected) to an action that outputs a buffer
object of the same type. The connected action can be explicitly created and connected by the user or
inferred by the PSS processing tool.

d) An action that outputs a buffer object may be bound to one or more actions that input a buffer object
of the same type. An action that outputs a buffer object is not required to be bound to an action that
inputs a buffer object of the same type.

e) Execution of the producing action shall complete before the execution of the inputting action begins.
The execution of the outputting action, and inputting action(s), if any, are sequential. See also
Figure 1 (relative to Example 18 and Example 19).

9.1.2 C++ syntax

The corresponding C++ syntax for Syntax 29 is shown in Syntax 30.

38 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

/// Declare a buffer object
class buffer : public detail::BufferBase {
protected:
/// Constructor
buffer (const scope& s);
/// Destructor
~buffer();
public:
/// In-line exec block
virtual void pre_solve();
/// In-line exec block

virtual void post_solve();

|5

Syntax 30—C++: buffer declaration

9.1.3 Examples

Examples of buffer objects are show in Example 18 and Example 19.

struct mem_segment_s {
rand int[4..1024] size;
rand bit[63:0] addr;

}:

buffer data_buff_ s {
rand mem_segment_s seg;

}:
component top {

action cons_mem_a {
input data buff_s in_data;
};

action prod_mem_a {
output data_buff_s out _data;
}:
}

Example 18—DSL.: buffer object

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

39

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct mem_segment_s : public structure {
PSS_CTOR(mem_segment_s, structure);
rand_attr<int> size { "'size", range<>{4,1024} };
rand_attr<bit> addr { "addr', width{63,0} };

}:

type_decl<mem_segment_s> mem_segment_s_decl;

struct data_buff_s : public buffer {
PSS_CTOR(data_buff_s, buffer);
rand_attr<mem_segment_s> seg {''seg"'}:;

};

type_decl<data_buff_s> data_buff_s_decl;

struct top : public component {

PSS_CTOR(top, component);

struct cons_mem_a : public action {
PSS_CTOR (cons_mem_a, action);

input<data buff_s> in_data { "in_data" };
}:

type_decl<cons_mem_a> cons_mem_a_decl;

struct prod_mem_a : public action {

PSS_CTOR (prod_mem_a, action);

output<data_buff_s> out_data { "out_data" };

};
type_decl<prod_mem_a> prod_mem_a_decl;

}:; // struct top

type_decl<top> top_decl;

Example 19—C++: buffer object

ohserved
behavior

=

Figure 1—Execution semantics implications of buffer objects

9.2 Stream objects

Stream objects represent transient data or control exchanged between actions during concurrent activity,
e.g., over a bus or network, or across interfaces. They represent data item flow or message/notification

exchange. See Syntax 31 or Syntax 32.

40 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

9.2.1 DSL syntax

stream identifier [: struct _super spec | { { struct body item } } [;]

Syntax 31—DSL.: stream declaration

The following also apply.
a) Stream types can inherit from previously defined unqualified structs or streams.

b) An action that inputs a stream object shall be bound to a single action that outputs a stream object of
the same type.

¢) Anaction that outputs a stream object shall be bound to a single action that inputs a stream object of
the same type.

d) The outputting and inputting actions are executed in parallel. The semantics of parallel execution are
discussed further in 12.3.3. See also Figure 2 (relative to Example 20 and Example 21).

9.2.2 C++ syntax

The corresponding C++ syntax for Syntax 31 is shown in Syntax 32.

/// Declare a stream object
class stream : public detail::StreamBase {
protected:
/// Constructor
stream (const scope& s);
/// Destructor
~stream();
public:
/// In-line exec block
virtual void pre_solve();
/// In-line exec block

virtual void post_solve();

}s

Syntax 32—C++: stream declaration

9.2.3 Examples

Examples of stream objects are show in Example 20 and Example 21.

Copyright © 2017 Accellera. All rights reserved. 41
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

42

struct mem_segment_s {
rand int[4..1024] size;
rand bit[63:0] addr;

}

stream data_buff_s {
rand mem_segment_s seg;

}

component top {
action cons_mem_a {
input data buff_s in_data;
}

action prod_mem _a {
output data buff_s out_data;
}
}

Example 20—DSL: stream object

struct mem_segment_s : public structure {
PSS_CTOR(mem_segment_s, structure);
rand_attr<int> size { "size", range<>(4,1024) };
rand_attr<bit> addr { "addr', width(63,0) };

};

type_decl<mem_segment_s> mem_segment_s_decl;

struct data_buff_s : public stream {
PSS_CTOR(data_buff_s, stream);
rand_attr<mem_segment_s> seg {''seg"};

};

type_decl<data_buff_s> data_buff_s_decl;

struct top : public component{
PSS_CTOR(top, component);
struct cons_mem_a : public action {

PSS_CTOR (cons_mem_a, action);

input<data buff_s> in_data {"in_data'"};

};

type_decl<cons_mem_a> cons_mem_a_decl;

struct prod_mem_a : public action {

PSS_CTOR (prod_mem_a, action);

output<data_buff_s> out_data {'out_data'"};

};
type_decl<prod_mem_a> prod_mem_a_decl;

}; // struct top

type_decl<top> top_decl;

Example 21—C++: stream object

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard June 14, 2017

alsarved
hehavior

Figure 2—Execution semantics implications of stream objects

9.3 State objects

State objects represent the state of some entity in the execution environment at a given time. See Syntax 33
or Syntax 34.

9.3.1 DSL syntax

state identifier [: struct _super spec | { { struct _body item } } [;]

Syntax 33—DSL.: state declaration

The following also apply.

a)

b)

¢)
d)

e)

2

h)

The writing and reading of states in a scenario is deterministic. With respect to a pool of state
structs, writing shall not take place concurrently to either writing or reading.

The initial state of a given type is represented by the built-in Boolean initial attribute. See 11.7.6 for
more on state pools (and initial).

State types can inherit from previously defined unqualified structs or states.

An action that has an input or output of state-object type operates on a pool of the corresponding
state-object type. bind directives are used to associate the action with the appropriate state-object
pool (see 11.7.4).

At any given time, a pool of state-object type contains a single state object. This object reflects the
last state specified by the output of an action bound to the pool. Prior to execution of the first action
that outputs to the pool, the object reflects the initial state specified by constraints involving the “ini-
tial” built-in field of state-object types.

The built-in variable prev is a reference from this state object to the previous on one on in the pool.
prev has the same type as this state object. The value of prev is unresolved in the context of the ini-
tial state object.

An action that inputs a state object reads the current state object from the state-object pool to which
it is bound.

An action that outputs a state object writes to the state-object pool to which it is bound, updating the
state object in the pool.

Execution of an action that outputs a state object shall complete before the execution of any input-
ting action begins. Execution of actions that produce a state object shall be sequential.

Copyright © 2017 Accellera. All rights reserved. 43
This is an unapproved Accellera Standards Draft, subject to change.

10

15

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

9.3.2 C++ syntax

The corresponding C++ syntax for Syntax 33 is shown in Syntax 34.

/// Declare a state object
class state : public detail::StateBase {
protected:
/// Constructor
state (const scope& s);
/// Destructor
~state();
public:
//] Test if this is the initial state
rand_attr<bool>& initial();
/// In-line exec block
virtual void pre_solve();
/// In-line exec block

virtual void post_solve();

|5

Syntax 34—C++: state declaration

9.3.3 Examples

Examples of state objects are show in Example 22 and Example 23.

component 10dev_c {
enum speed_e {SLOW, FAST};

state config_s {
rand speed_e speed;
constraint initial -> speed == SLOW;
};
pool config_s config_var;
bind config_var *;

action setup {
output config_s next_cfg;

};

action traffic {
rand int[1,2,4,8] rate;
input config_s curr_cfg;

constraint rate == -> curr_cfg.speed == FAST;
}:
}:

Example 22—DSL.: state object

44 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

class 10dev_c : public component {
public:
PSS_CTOR(I10dev_c, component);
class speed_e : public enumeration {
PSS_ENUM(speed_e, enumeration, SLOW, FAST);
}:
struct config_s : public state {
PSS_CTOR(config_s, state);
rand_attr<speed_e> speed {''speed'};
constraint init { if_then {initial(), speed==speed_e::SLOW}};
}:
type_decl<config_s> config_s_decl;
pool<config_s> config_var {"config_var'};
bind b {config_var};
class setup : public action {
public:
PSS_CTOR(setup, action);
output<config_s> next_cfg {"'next_cfg"};
}:
type_decl<setup> setup_decl;
class traffic : public action {
public:
PSS_CTOR(traffic, action);
rand_attr<int> rate {'rate", range<>(1)(2)(4)(8)};
input<config_s> curr_cfg;
constraint c {if_then {rate==8, curr_cfg->speed==speed_e::FAST }
}:
};
type_decl<traffic> traffic_decl;
}:

type_decl<l0dev_c> 10dev_c_decl;

Example 23—C++: state object

9.4 Using flow objects

Flow object references are specified by actions as inputs or outputs. These references are used to specify
rules for combining actions in legal scenarios. See Syntax 35 or Syntax 36 and Syntax 37.

9.4.1 DSL syntax

input | output action_data declaration

Syntax 35—DSL: Flow object reference

9.4.2 C++ syntax

Action input and outputs are defined using the Input (see Syntax 36) and output (see Syntax 36) classes
respectively.

The corresponding C++ syntax for Syntax 35 is shown in Syntax 36 and Syntax 37.

Copyright © 2017 Accellera. All rights reserved. 45
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

/// Declare an action input
template<class T>
class input : public detail::InputBase {
public:

/// Constructor

input (const scope& s);

/// Destructor

~input();

/Il Access content

T* operator-> ();

/Il Access content

T& operator™ ();

|5

Syntax 36—C++: action input

/// Declare an action output
template<class T>
class output : public detail::OutputBase {
public:

/// Constructor

output (const scope& s);

/// Destructor

~output();

/Il Access content

T* operator-> ();

/Il Access content
T& operator™ ();
IR

Syntax 37—C++: action output

9.4.3 Examples

For examples of how to use buffer or stream objects, see 9.1.3 or 9.2.3, respectively.

9.5 Implicitly binding flow objects

Input and output object bindings may be inferred from the context of the activity description (see Annex E).
If an action is traversed in an activity that does not explicitly bind its input(s) or output(s), binding needs to
be inferred to satisfy the rules in 9.4. This may involve executing actions that are not explicitly traversed in
the activity or binding to other actions that are traversed. In all cases, binding two actions shall be such that
the output of one action is type-compatible with the input of another, scheduling restrictions are
accommodated, and any constraints are satisfied. Inferred binding behaves as if the binding was specified
explicitly using the bind statement (see 11.7.4).

46 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

10. Resource objects

Resource objects represent computational resources available in the execution environment that may be
assigned to actions for the duration of their execution.

10.1 Declaring resource objects

Resource struct types can inherit from previously defined unqualified structs or resource structs. See
Syntax 38 or Syntax 39.

10.1.1 DSL syntax

resource identifier [: struct_super_spec | { { struct body item } } [;]

Syntax 38—DSL.: resource declaration

The following also apply.

a) Resources have a built-in numeric non-negative attribute called instance_id (see 11.7.5). This attri-
bute represents the relative index of the resource instance in the pool. The value of instance_id
ranges from O to pool_size - 1. See also 11.7.

b) There can only be one resource object per instance_id value for a given pool. Thus, actions ref-
erencing a resource object of some type with the same instance_id are necessarily referencing
the very same object and agreeing on all its properties.

10.1.2 C++ syntax

The corresponding C++ syntax for Syntax 38 is shown in Syntax 39.

/// Declare a resource object
class resource : public detail::ResourceBase {
protected:
/// Constructor
resource (const scope& s);
/// Destructor
~resource();
public:
/// Get the instance id of this resource
rand_attr<bit>& instance id();
/// In-line exec block
virtual void pre_solve();
/// In-line exec block

virtual void post_solve();

}s

Syntax 39—C++: resource declaration

Copyright © 2017 Accellera. All rights reserved. 47
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

10.1.3 Examples

For example of how to declare a resource, see 10.2.3.

10.2 Claiming resource objects

Resource objects may be locked or shared by actions. This is expressed by declaring the resource reference
field of an action. See Syntax 40 or Syntax 41 and Syntax 42.

10.2.1 DSL syntax

lock | share action_data declaration

Syntax 40—DSL: Resource reference

lock and share are modes of resource use by an action. They serve to declare resource requirements of the
action and restrict legal scheduling relative to other actions. Locking excludes the use of the resource
instance by another action throughout the execution of the locking action and sharing guarantees that the

resource is not locked by another action during its execution.

The following also apply.

In a PSS-generated test scenario, no two actions may be assigned the same resource instance if they
overlap in execution time and at least one is locking the resource. In other words, there is a strict
scheduling dependency between an action referencing a resource object in lock mode and all other

actions referencing it.
10.2.2 C++ syntax

The corresponding C++ syntax for Syntax 40 is shown in Syntax 41 and Syntax 42.

/// Claim a locked resource
template<class T>
class lock : public detail::LockBase {
public:

/// Constructor

lock(const scope& name);

/// Destructor

~lock();

/Il Access content

T* operator-> ();

/Il Access content

T& operator™ ();

|5

Syntax 41—C++: Claim a locked resource

48 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Claim a shared resource
template<class T>
class share : public detail::ShareBase {
public:

/// Constructor

share(const scope& name);

/// Destructor

~share();

/Il Access content

T* operator-> ();

/Il Access content

T& operator™ ();

|5

Syntax 42—C++: Share a locked resource

10.2.3 Examples

Example 24 and Example 25 demonstrate resource claims in lock and share mode. Action mem_copy
claims exclusive access to one CPU_core_s instance out of a pool of four. Action
two_DMA_chan_transfer claims exclusive access to two different DMA_channel _s instances out of
a pool of 32. It also claims one CPU_core_s instance, but in share mode, i.e., not excluding its assignment
to other concurrent actions, given that it too is in share mode.

component sys_c {

resource DMA_channel_s {};

pool[32] DMA_channel_s Chan_pool;

bind Chan_pool *;

resource CPU_core_s {};

pool[4] CPU_core_s core_pool;

bind core_pool *;

action mem_copy {
lock CPU_core_s core;

}:

action two_chan_transfer {
lock DMA_channel_s chan_A;
lock DMA_channel_s chan_B;
share CPU_core_s ctrl_core;

}:

Example 24—DSL.: Resource object

Copyright © 2017 Accellera. All rights reserved. 49
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

50

Portable Test and Stimulus

class sys_c : public component {
public:
PSS_CTOR(sys_c,component);
struct DMA _channel_s : public resource {
PSS_CTOR(DMA_channel_s,resource);
}:
type_decl<DMA_channel _s> DMA_channel_s_decl;
pool<DMA_channel_s> chan_pool {chan_pool', 32};
bind bl { chan_pool };
struct CPU_core_s : public resource {
PSS_CTOR(CPU_core_s,resource);
}:
type_decl<CPU_core_s> CPU_core_s_decl;
pool<CPU_core_s> core_pool {core_pool', 4};
bind b2 { core_pool };
class mem_copy : public action {
public:
PSS_CTOR(mem_copy,action);
lock<CPU_core_s> core {"'core'};
}:
type_decl<mem_copy> mem_copy_decl;
class two_chan_transfer : public action {
public:
PSS_CTOR(two_chan_transfer,action);
lock<DMA_channel_s> chan_A {'chan_A"};
lock<DMA_channel_s> chan_B {'chan_B"};
share<CPU_core_s> ctrl_core {core"};
};
type_decl<two_chan_transfer> two_chan_transfer_decl;
};

type_decl<sys _c> sys_c_decl;

Example 25—C++: Resource object

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

11. Components and pools

Components and pools serve as a mechanism to encapsulate and reuse elements of functionality in a portable
stimulus model. Typically, a model is broken down into parts that correspond to roles played by different
actors during test execution. Components often align with certain structural elements of the system and
execution environment, such as hardware engines, software packages, or test bench agents. Pools represent
collections of resources, state variables, and connectivity for data-flow purposes.

Components are structural entities, defined per type and instantiated under other components (see Syntax 43
or Syntax 44, Syntax 45, and Syntax 46). Component instances constitute a hierarchy (tree structure),
beginning with the top or root component, called pss_top. Components have unique identities
corresponding to their hierarchical path, but no data-attributes or constraints of their own. Components may
also encapsulate imported functions (see 17.2.1) and imported class instances (see 17.7).

Pools, too, are structural entities instantiated under components. They are used to determine the accessibility
actions have to flow and resource objects. This is done by binding object-reference fields of action types to
pools of the respective object types. Bind directives in the component scope associate resource references
with a specific resource pool, state references with a specific state pool (or state variable), and buffer /
stream object references with a specific data-object pool (see 11.7.4).

11.1 DSL syntax

component_declaration ::= component component_identifier [: component_super_spec]
{ { component_body item } } [;]

component_super_spec ::=: type_identifier
component_body_item ::=
overrides_declaration
| component_field declaration
| action_declaration
| object bind stmt
| inline_type_object declaration

| exec_block

| package body item

Syntax 43—DSL: component declaration

11.2 C++ syntax

The corresponding C++ syntax for Syntax 43 is shown in Syntax 44, Syntax 45, and Syntax 46.

Components are declared using the component class (see Syntax 44).

Copyright © 2017 Accellera. All rights reserved. 51
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

/// Declare a component
class component : public detail::ComponentBase {
protected
/// Constructor
component (const scope& s);
/Il Copy Constructor
component (const component& other);
/// Destructor
~component();
public:
/// In-line exec block

virtual void init();

|5

Components are instantiated using the comp_inst<> class (see Syntax 45).

Syntax 44—C++: component declaration

/// Declare a component instance
template<class T>
class comp _inst : public detail::ComplInstBase {
public:

/// Constructor

comp_inst (const scope&k s);

/Il Copy Constructor

comp_inst (const comp_inst& other);

/// Destructor

~comp_inst();

/Il Access content

T* operator-> ();

/Il Access content
T& operator™ ();
15

Syntax 45—C++: component instantiation

Arrays of components are instantiated using the comp_inst_vec<> class (see Syntax 46).

52

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Template specialization for array of components
template<class T>
class comp_inst< vec<T> > : public detail::CompInstVecBase {
public:
comp_inst(const scope& name, const std::size_t count);
comp_inst<T>& operator[](const std::size t idx);
std::size_t size() const;
15

template < class T >

using comp_inst_vec = comp_inst< vec <T>>;

Syntax 46—C++: Arrays of components instantiation

11.3 Examples

For examples of how to use a component, see 11.5.2.

11.4 Components as namespaces

Component types serve as a namespace for their nested types, i.e., action and struct types defined under
them. Action and struct types may be thought of as (non-static) inner classes of components. The qualified
name of action and object types is of the form "component-type: :class-type~. Within a given
component type, references can be left unqualified. However, referencing a nested type from another
component requires the component namespace qualification. In a given namespace, identifiers shall be
unique. Neither components nor packages may be declared inside other components or packages. Therefore,
any type qualification using the :: operator only has one level and the right-hand side shall not be a
component or package type.

11.5 Component instantiation

Components are instantiated under other components as their fields, much like data fields of structs.
Component fields may be of component and import-class type, as well as data fields, and may be arrays
thereof.

11.5.1 Semantics

a) Component fields are non-random; therefore, the rand modifier shall not be used. Component data
fields represent configuration data that is accessed by actions declared in the component. A compo-
nent type shall not be instantiated under its own sub-tree.

b) Inany model, the component instance tree has a predefined root component, pSS_top. Other com-
ponents or actions are instantiated (directly or indirectly) under pss_top. See also Example 26 and

Example 27.

¢) Scalar (non-array) data fields (int, bit, chandle, bool, string, or enum) may be initialized using a
constant expression in their declaration. Any data field may be initialized via an exec init block,
which overrides the value set by an initialization declaration. Exec init blocks may only contain
assignment statements or imported function calls. The component tree is elaborated to instantiate
each component and then the exec init blocks are evaluated bottom-up. See also Example 28 and

Example 29.

Copyright © 2017 Accellera. All rights reserved. 53
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

d) Component data fields are considered immutable once construction of the component tree is com-
plete. Actions can read the value of these fields, but cannot modify their value. Component data
fields are accessed from actions relative to the comp field, which is a handle to the component con-

10

15

20

25

30

35

40

45

50

55

text in which the action is executing. See also Example 30 and Example 31.

11.5.2 Examples

Example 26 and Example 27 depict a component tree definition. In total, there is one instance of

multimedia_ss_c, four instances of codec_c, and eight instances of vid_pipe_c.

component vid_pipe c { ... };

component codec ¢ {
vid_pipe_c pipeA, pipeB;
action decode { ... };

¥

component multimedia_ss c {
codec_c codecs[4];

}:

component pss_top {
multimedia_ss_c multimedia_ss;

}:

Example 26—DSL: Component instantiation

type_decl<vid_pipe_c> vid_pipe_c_decl;

class codec_c : public component {
PSS_CTOR(codec_c, component);
comp_inst<vid_pipe_c> pipeA{ pipeA”}, pipeB{ 'pipeB"};
class decode : public action { PSS _CTOR(decode, action); };
type_decl<decode> decode_decl;

}:

type_decl<codec_c> codec_c_decl;

class multimedia_ss _c : public component {
PSS_CTOR(multimedia_ss_c, component);
comp_inst_vec<codec_c> codecs{ "codecs", 4};

};

type_decl<multimedia_ss_c> multimedia_ss_c_decl;

class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst<multimedia_ss_c> multimedia_ss{"multimedia_ss"};

}:

type_decl<pss_top> pss_top_decl;

class vid_pipe_c : public component {PSS_CTOR(vid_pipe_c, component);};

Example 27—C++: Component instantiation

In Example 28 and Example 29, the init exec blocks are evaluated in the following order.
a) pss_top.sl.init
b) pss_top.s2.init
c) pss_top.init

54 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

This results in the component fields having the following values.
sl.base_addr=0x2000 (pss_top::init overwrote the value set by
sub_c::init)
s2.base_addr=0x1000 (value set by sub _c::init)

component sub_c {
int base_addr;

exec Init {
base addr = 0x1000;
b
};

component pss_top {
sub_c s1, s2;

exec init {
sl.base_addr = 0x2000;
}
}

Example 28—DSL: Data initialization in a component

class sub_c : public component {
PSS_CTOR(sub_c, component);
attr<int> base_addr {"base_addr'};
exec e { exec::init,
base_addr = 0x1000
}:
}:
type_decl<sub_c> sub_c_decl;
class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst<sub_c> s1{''s1"}, s2{"'s2"};
exec e {exec::init,
sl->base_addr = 0x2000
}:
};
type_decl<pss_top> pss_top_decl;

Example 29—C++: Data initialization in a component

In Example 30 and Example 31, component pSS_top contains two instances of component sub_c.
Component sub_c contains a data field named base_addr that controls offset addr when action
sub_c: :B traverses action A.

During construction of the component tree, component pss_top sets s1.base_addr=0x1000 and
s2.base_addr=0x2000.

Action top_c::entry traverses action sub_c: :B twice. Depending on which component instance
sub_c: :B is associated with during traversal, it will cause Sub_c: - A to be associated with a different
base addr.

Copyright © 2017 Accellera. All rights reserved. 55
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

56

If sub_c: :B executes in the context of top_c.s1, sub_c: - A uses 0x1000.
If sub_c: :B executes in the context of top_c.s2, sub_c: A uses 0x2000.

component sub_c {
bit[31:0] base_addr = 0x1000;
action A {
exec body {
// reference base_addr in context component
activate(comp.base_addr + 0x16);
// activate() is an imported function
}
}
}

component pss_top {
sub_c sl1, s2;
exec init {
sl_base_addr
s2_base_addr

0x1000;
0x2000;

}

action entry {
sub_c::A a;
activity {
repeat (2) {
a; // Runs sub_c::A with 0x1000 as base_addr when
// associated with sl
// Runs sub_c::A with 0x2000 as base_addr when
// associated with s2;

Example 30—DSL: Accessing component data field from an action

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard June 14, 2017

class sub_c : public component {
PSS_CTOR(sub_c, component);
attr<bit> base_addr {"base_addr™, width (32), 0x1000};
class A : public action {
PSS_CTOR(A,action);
exec e {exec::body,
activate(static_cast<sub_c*>(comp() -val())->base_addr + 0x16)
}:
}:
type_decl<A> A decl;
};
type_decl<sub_c> sub_c_decl;
class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst<sub_c> s1{"s1"}, s2{''s2"};
exec e {exec::init,
sl->base_addr = 0x1000,
s2->base_addr = 0x2000
}:
class entry : public action {
PSS_CTOR(entry, action);
action_handle<sub_c::A> a {"a"};
activity g {

repeat { 2,
a // Runs sub_c::A with 0x1000 as base_addr when associated
// with si1
// Runs sub_c::A with 0x2000 as base_addr when associated
// with s2;
}
}:
};
type_decl<entry> entry_decl;

}:
type_decl<pss_top> pss_top_decl;

Example 31—C++: Accessing component data field from an action

11.6 Component references

Each action instance is associated with a specific component instance of its containing component type, the
component-type scope where the action is defined. The component instance is the “actor” or “agent” that
performs the action. Only actions defined in the scope of instantiated components can legally participate in a
scenario.

The component instance with which an action is associated is referenced via the built-in attribute comp. The
value of the comp attribute can be used for comparisons (in equality and inequality expressions). The static
type of the comp attribute of a given action is the type of the respective context component type.
Consequently, sub-components of the containing component may be referenced via the comp attribute using
relative paths.

11.6.1 Semantics

A compound action can only create sub-actions that are defined in its containing component or
defined in component types that are instantiated in its containing component's instance sub-tree. In

Copyright © 2017 Accellera. All rights reserved. 57
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

other words, compound actions cannot instantiate actions that are defined in components outside
their context component hierarchy.

11.6.2 Examples

Example 32 and Example 33 demonstrate the use of the comp attribute. The first constraint compares the
action’s component instance using a global static path. The constraint within the activity forces the action to
be associated with a specific sub-component. It uses a static path relative to the component instance of its
containing action.

For action C1: :Al to contain action C2: A1, component C2 needs to be instantiated somewhere under
C1.

component codec_c {
vid_pipe_c pipeA, pipeB;

action decode {
constraint {
mode == AX -> comp != pss_top.multimedia_ss.codecs[0];

}

vid_pipe_c::program pipe_prog_a;

activity {
pipe_prog_a with {comp == this.comp.pipeA;};
}
}
}
Example 32—DSL.: Constraining a comp attribute
58 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14

, 2017

class codec_c : public component {
PSS_CTOR(codec_c, component);
comp_inst<vid_pipe_c> pipeA{"pipeA"}, pipeB{ 'pipeB'};
class decode : public action {
PSS_CTOR(decode, action);
rand_attr<modes_e> mode {'‘mode'};
// TODO: we need a way to access pss_top globally
// constraint cl {
// if_then {

// mode == modes_e: :AX,

// comp() !'= pss_top->multimedia_ss->codecs[0];
// 3}

/7 };

action_handle<vid_pipe_c::program> pipe_prog_a{'pipe_prog_a"};
activity act {
pipe_prog_a.with(
pipe_prog_a->comp()==static_cast<codec_c*>(comp()-.val())->pipeA
)
}:
}:
type_decl<decode> decode_decl;
};

type_decl<codec_c> codec_c_decl;

Example 33—C++: Constraining a comp attribute

10

15

20

25

Consider the code in Example 34 and Example 35. It instantiates four instances of codec_c and, therefore,
four instances of vid_pipe_c. Action multi_activate expands to multiple activate actions. These
are all associated with the same vid_pipe_c instance that is instantiated under the codec_c instance
with which their parent compound action is associated.

component vid_pipe_c {
action activate { /* ... */}

}

component codec_c {
vid_pipe_c pipe;
action multi_activate {
rand int[2..6] count;

activity {
repeat (count) {
do vid_pipe_c::activate;
}
}
}
}

component pss_top {
codec_c codecs[4];

}

Example 34—DSL: Sub-action component assignment

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

59

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class vid_pipe_c : public component {
PSS_CTOR(vid_pipe_c, component);
class activate: public action {...};
type_decl<activate> activate_decl;
}
type_decl<vid_pipe_c> vid_pipe_c_decl;
class codec_c : public component {
PSS_CTOR(codec_c, component);
comp_inst<vid_pipe_c> pipe {"pipe"};
class multi_activate : public action {
PSS_CTOR(multi_activate, action);
rand_attr<int> count {"count™, range<>(2,6)};
activity a {
repeat { count,
action_handle<vid_pipe_c::activate>()

};
};
type_decl<multi_activate> multi_activate_decl;
};
type_decl<codec_c> codec_c_decl;
class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst_vec<codec_c> codecs {'codecs", 4};
};
type_decl<pss_top> pss_top_decl;

Example 35—C++: Sub-action component assignment

11.7 Pool instantiation and static binding

Pools are used to determine possible assignment of objects to actions, and, thus, shape the space of legal test
scenarios. Flow object exchange is always mediated by a pool. One action outputs an object to a pool and
another action inputs it from that same pool. Similarly, actions lock or share a resource object within some
pool.

11.7.1 DSL syntax

component_pool_declaration ::= pool [[expression | | type_identifier identifier ;

Syntax 47—DSL: Pool instantiation

In Syntax 47, type_identifier refers to a flow/resource object type, i.e., a buffer, stream, state, or resource
struct-type.

The expression applies only to pools of resource type; it specifies the number of resource instances in the
pool. If omitted, the size of the resource pool defaults to 1.

The following also apply.
a) The execution semantics of a pool is determined by its object type.

b) A pool of state type can hold one object at any given time, a pool of resource type can hold up to
the given maximum number of unique resource objects throughout a scenario, and a pool of buffer
or stream type is not restricted in the number of objects at a given time or throughout the scenario.

60 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

11.7.2 C++ syntax

The corresponding C++ syntax for Syntax 47 is shown in Syntax 48.

/// Declare a pool
template <class T>
class pool : public detail::PoolBase {
public:
pool (const scope& name, std::size t count = 1);

¥

Syntax 48—C++: Pool instantiation

11.7.3 Examples
For an example of pool usage, see 11.7.4.3.
11.7.4 Static pool binding directive

Every action executes in the context of a single component instance and every object resides in some pool.
Multiple actions may execute concurrently, or over time, in the context of the same component instance, and
multiple objects may reside concurrently, or over time, in the same pool. Actions of a specific component
instance output objects to or input objects from a specific pool. Actions of a specific component instance can
only be assigned a resource of a certain pool. Static bind directives determine which pools are accessible to
the actions’ object references under which component instances (see Syntax 49 or Syntax 50). Binding is
done relative to the component sub-tree of the component type in which the bind directive occurs.

11.7.4.1 DSL syntax

object_bind_stmt ::= bind hierarchical_id object bind item or list ;
object_bind_item_or_list ::=
component_path
| { component path {, component path } }
component_path ::=
component_identifier { . component_path_elem }
I *
component_path_elem ::=

component_action_identifier
| *

Syntax 49—DSL.: Static bind directives

Pool binding can take one of two forms.

— Explicit binding - associating a pool with a specific object-reference field (input/output/resource-
claim) of an action type under a component instance.

— Default binding - associating a pool generally with a component instance sub-tree, by object type.

The following also apply.

Copyright © 2017 Accellera. All rights reserved. 61
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

b)

June 14, 2017 Portable Test and Stimulus

Components and pools are identified with a relative instance path expression. A specific object ref-
erence field is identified with the component instance path expression, followed by an action-type
name and field-name, separated by dots (.). The designated field shall agree with the pool in the
object-type.

Default binding can be specified for an entire sub-tree by using a wildcard instead of specific paths.
Explicit binding always takes precedence over default bindings. Conflicting explicit bindings for the
same object-reference field shall be illegal. Between multiple default bindings applying to the same
object-reference field, the bind directive in the context of the top-most component instance takes
precedence (i.e., the order of default binding resolution is top-down).

11.7.4.2 C++ syntax

The corresponding C++ syntax for Syntax 49 is shown in Syntax 50.

/// Declare a bind
class bind : public detail::BindBase {
public:
/// Bind a resource to multiple targets
template <class R /*resource*/, typename... T
/*comp_inst/input/output/lock/share*/ >
bind (const pool<R>& a_pool, const T&... targets);
/Il Explicit binding of action inputs and outputs
bind (const std::initializer list<detail::I0OBase>& io_items);
/// Destructor
~bind();
¥

Syntax 50—C++: Static bind directives

11.7.4.3 Examples

Example 36 and Example 37 illustrate the two forms of binding:, explicit and default. Action
power_transition’s input and output are both associated with the context component’s
(graphics_c) state-object pool. However, action observe_same_power_state has two inputs,
each of which is explicitly associated with a different state-object pool, the respective sub-component state
variable. The channel_s resource pool is instantiated under the multimedia subsystem and is shared
between the two engines.

62

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

state power_state_s { int[0..4] val; }
resource channel_s {}

component graphics_c {
pool power_state_s power_state_var;
bind power_state var *; // accessible to all actions under this
// component (specifically power_transition®s
prev/next)
action power_transition {
input power_state_s prev;
output power_state_s next;
lock channel_s chan;
}
}

component my_multimedia_ss_c {
graphics_c gfxO0;
graphics_c gfx1;
pool [4] channel_s channels;
bind channels {gfx0.*,gfx1.*};// accessible by default to all
// actions under these components sub-tree
// (specifically power_transition"s chan)

action observe_same_power_state {
input power_state s gfx0_state;
input power_state s gfxl_state;
constraint gfx0_state.val == gfxl_state.val;

}

// explicit binding of the two power state variables to the

// respective inputs of action observe_same_power_state

bind gfx0.power_state_var observe_same_power_state.gfx0_stateO;
bind gfxl.power_state var observe_same_ power_state.gfxl statel;

Example 36—DSL.: Pool binding

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

June 14, 2017

63

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct power_state_s : public state {
PSS_CTOR(power_state_s, state);
attr<int> val{"val", range<>(0,4) };
}:
type_decl<power_state_s> power_state_s_decl;
struct channel_s : public resource {
PSS_CTOR(channel_s,resource);
}:
type_decl<channel_s> channel_s_decl;
class graphics_c : public component {
PSS_CTOR(graphics_c, component);
pool<power_state_ s> power_state var {'power_state var'};
bind bl {power_state var}; // accessible to all actions under this component
// (specifically power_transition®™s prev/next)
class power_transition_a : public action {
PSS_CTOR(power_transition_a, action);
input <power_state_s> prev {''prev'};
output <power_state s> next {"'next'};
lock <channel_s> chan{"'chan"};
}:
type_decl<power_transtion_a> power_transition_a_decl;
}:
type_decl<graphics_c> graphics_c_decl;
class my_multimedia_ss_c : public component {
comp_inst<graphics_c> gfx0 {"'gfx0"};
comp_inst<graphics_c> gfxl {"gfx1"};
pool <channel_s> channels {channels™, 4};
bind bl { channels, gfx0, gfxl}; // accessible by default to all actions
// under these components sub-tree
// (specifically power_transition"s chan)
class observe_same_power_state_a : public action {
PSS_CTOR(observe_same_power_state_a, action);
input <power_state_s> gfx0_state {"gfx0_state'};
input <power_state s> gfxl_state {"gfxl_state'};
constraint cl { gfx0_state->val == gfxl_state->val };
};
type_decl<observe_same_power_state_a> observe_same_power_state a_decl;
// explicit binding of the two power state variables to the
// respective inputs of action observe_same_power_state
bind b2 {gfx0->power_state var,
observe_same_power_state_a_decl->gfx0_state};
bind b3 {gfxl1->power_state_var,
observe_same_power_state_a_decl->gfx1l_state};
}:

type_decl<my _multimedia_ss_c> my multimedia_ss_c_decl;

Example 37—C++: Pool binding

11.7.5 Resource pools and the instance_id attribute

Each object in a resource pool has a unique instance_ id value, ranging from O to the pool’s size — 1.
Two actions that reference a resource object with the same Instance_id value in the same pool are
referencing the same resource object.

For example, in Example 38 and Example 39, action transfer is locking two kinds of resources:
channel_s and cpu_core_s. Because channel _s is defined under component dma_c, each dma_c

64 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

instance has its own pool of two channel objects. Within action par_dma_xFers, the two transfer actions
can be assigned the same channel Instance_id because they are associated with different dma_c
instances. However, these same two actions need to be assigned a different Cpu_core_s object, with a
different Instance_id, because both dma_c instances are bound to the same resource pool of
Ccpu_core_s objects defined under pss_top and they are scheduled in parallel. The bind directive
designates the pool of cpu_core_s resources is to be utilized by both instances of the dma_ ¢ component.

resource cpu_core_s {}

component dma_c {
resource channel_s {}
pool[2] channel_s channels;
bind channels *; // accessible to all actions
// under this component (and its sub-tree)

action transfer {

lock channel_s chan;

lock cpu_core_s core;

}
}

component pss_top {
dma_c dmaO,dmal;
pool[4] cpu_core_s cpu;
bind cpu {dmaO, dmal};// accessible to all actions
// under the two sub-components
action par_dma_xFfers {
dma_c::transfer xfer_a;
dma_c::transfer xfer_b;

activity {
parallel {

xfer_a;

xfer_b;

constraint xfer_a.comp != xfer_b.comp;

constraint xfer_a.chan.instance_id ==
xFfer_b.chan.instance_id; // OK

constraint xfer_a.core.instance_id ==
xfer_b.core.instance_id; // conflict!

Example 38—DSL: Resource object assignment

Copyright © 2017 Accellera. All rights reserved. 65
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct cpu_core_s : public resource {
PSS_CTOR(cpu_core_s, resource);
}:
type_decl<cpu_core_s> cpu_core_s_decl;
class dma_c : public component {
PSS_CTOR(dma_c, component);
struct channel_s : public resource {
PSS_CTOR(channel_s, resource);
}:
type_decl<channel_s> channel_s_decl;
pool <channel_s> channels {''channels", 2};
bind bl {channels}; // accessible to all actions
// under this component (and its sub-tree)
class transfer : public action {
PSS_CTOR(transfer, action);
lock <channel_s> chan {"chan"};
lock <cpu_core_s> core {''core"};
}:
type_decl<transfer> transfer_decl;
}:
type_decl<dma_c> dma_c_decl;
class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst<dma_c> dmaO{"'dma0"}, dmal{dmal'};
pool <cpu_core_s> cpu {"cpu', 4};
bind bl {cpu, dmaO, dmal}; // accessible to all actions
// under the two sub-components
class par_dma_xfers : public action {
PSS_CTOR(par_dma_xfers, action);
action_handle<dma_c: :transfer> xfer_a {''xfer_a'"};
action_handle<dma_c: :transfer> xfer_b {"'xfer_b"};
constraint cl { xfer_a->comp() = xfer_b->comp() };
constraint c2 { xfer_a->chan->instance_id() ==
xfer_b->chan->instance_id() }; 7/ 0K
constraint c3 { xfer_a->core->instance_id() ==
xFfer_b->core->instance_id() }; // conflict!
activity act {

parallel {
xfer_a,
xfer_b
}:
}:
}:
type_decl<par_dma_xfers> par_dma_xfers_decl;

}:
type_decl<pss_top> pss_top_decl;

Example 39—C++: Resource object assignment

11.7.6 Pool of states and the initial attribute

Each pool of a state struct-type contains exactly one state object at any given point in time throughout the
execution of the scenario. A state pool serves as a state-variable instantiated on the context component.

Actions outputting to a state pool can be viewed as transitions in a finite-state-machine.

66 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Prior to execution of an action that outputs a state object to the pool, the pool contains the initial object. The
initial flag is true for the initial object and Fal se for all other objects subsequently residing in the pool.
The initial state object is overwritten by the first state object (if any) which is output to the pool. The initial
object is only input by actions that are scheduled before any action that outputs a state object to the same
pool.

Consider, for example, the code in Example 40 and Example 41. The action sys_configure expands
into two codec_c: :configure actions: one to mode A and the other to mode B. Each component
instance can have just one configure action, because it has an initial state as its precondition. So
these two actions are necessarily associated with different component instances, codecO and codecl.
But, the activity does not specify which action is associated with which instance.

enum codec_config_mode_e {UNKNOWN, A, B}

component codec_c {
state configuration_s {
rand codec_config_mode_e mode;
constraint initial -> mode == UNKNOWN;

}

pool configuration_s config_var;
bind config_var *;

action configure {
input configuration_s prev_conf;
output configuration_s next_conf;
constraint prev_conf.mode == UNKNOWN && next_conf.mode inside
[A, B];
}
}

component pss_top {
codec_c codecO,codecl;
action sys_configure {

activity {
do codec_c::configure with {next_conf.mode == A;};
do codec_c::configure with {next_conf.mode == B;};
// OK, but only on a different codec instance

}

}
}
Example 40—DSL.: State object binding
Copyright © 2017 Accellera. All rights reserved. 67

This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class codec_config_mode_e : public enumeration {
PSS_ENUM(codec_config_mode_e, enumeration, UNKNOWN, A, B);
}:
type_decl<codec_config_mode_e> codec_config_mode_e_decl;
class codec_c : public component {
PSS_CTOR(codec_c, component);
struct configuration_s : public state {
PSS_CTOR(configuration_s, state);
rand_attr<codec_config_mode_e> mode {''mode"};
constraint cl {
if_then {
initialQ,
mode == codec_config_mode_e: :UNKNOWN

};
};
type_decl<configuration_s> configuration_s_decl;
pool <configuration_s> config_var { "config_var'} ;
bind bl { config_var };
class configure_a : public action {
PSS_CTOR(configure_a, action);
input <configuration_s> prev_conf { "prev_conf" };
output <configuration_s> next_conf { "next_conf" };
constraint cl { prev_conf->mode == codec_config_mode_e: :UNKNOWN &&
inside (next_conf->mode,
range<codec_config_mode_e>
(codec_config_mode_e::A)
(codec_config_mode_e::B))
}:
};
type_decl<configure_a> configure_a_decl;
}:
type_decl<codec_c> codec_c_decl;
class pss_top : public component {
PSS_CTOR(pss_top, component);
comp_inst <codec_c> codecO {"'codec0"}, codecl{''codecl'};
class sys_configure_a : public action {
PSS_CTOR(sys_configure_a, action);
action_handle<codec_c::configure_a> config_A {"config_A"};
action_handle<codec_c: :configure_a> config_B {"config_B"};
activity act {

config_A.with(config_A->next_conf->mode == codec_config_mode_e::A),
config_B.with(config_B->next_conf->mode == codec_config_mode_e::B)
// OK, but only on a different codec instance
};
};
type_decl<sys_configure_a> sys_configure_a_decl;

}:
type_decl<pss_top> pss_top_decl;

Example 41—C++: State object binding

11.7.7 Sequencing constraints on state objects

A pool of state type stores exactly one state-object at any given time during the execution of a test scenario,
thus serving as a state-variable (see 11.7.4). Any action that outputs a state object to a pool is considered a
state transition with respect to that state-variable. Within the context of a state type, reference can be made to

68 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

attribute values of previous state, relating them in Boolean expressions to attributes values of this state. This
is done by using the built-in reference variable prev (see 9.3).

NOTE—Any constraint in which prev occurs is vacuously satisfied in the context of the initial state object.

In Example 42, the first constraint inside power_state_s determines that the value of domain_B may
only decrement by 1, remain the same, or increment by 1 between consecutive states. The second constraint
determines that if a domain_C in any given state is O, the subsequent state has a domain_C of O or 1 and
domain_B is 1. These rules apply equally to the output of the two actions declared under component
power_ctrl_c.

state struct power_state s {
rand int[0..3] domain_A, domain_B, domain_C;

constraint domain_B inside { prev.domain_B - 1,
prev.domain_B,
prev.domain_B + 1};

constraint prev.domain_C==0 -> domain_C inside{0,1} || domain_B==0;

}:

component power_ctrl_c {
pool power_state_s psvar;
bind psvar *;

action power_transl {
output power_state_s next_state;

¥

action power_trans2 {
output power_state_s next_state;
constraint next_state.domain_C == 0;

}:

Example 42—DSL.: Sequencing constraints

Copyright © 2017 Accellera. All rights reserved. 69
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

12. Activities

When an action includes multiple operations, these behaviors are described within the action using an
activity.

12.1 Activity declarations

Because activities are explicitly specified as part of an action, and there may be at most one activity in a
given action, activities themselves do not have a separate name.

12.2 Activity constructs

Each node of an activity represents an action, with the activity specifying the temporal, control, and/or data
flow between them. These relationships are described via activity rules, which are explained herein. See also
Syntax 51 or Syntax 53.

12.2.1 DSL syntax

Named sub-activities, introduced through statement labels, allow referencing action-handles using
hierarchical paths. Reference can be made to an action-handle from within the same activity, from the
context action top-level scope, and from outside the action scope. Only action-handles declared directly
under a labeled activity statement can be accessed outside their lexical scope. Action-handles declared in
unnamed activity scope cannot be accessed.

Note that the top activity scope is unnamed. For an action-handle to be accessible directly in the top-level
action scope or from outside, it needs to be declared at the top-level action scope.

activity declaration ::= activity { { [identifier :] activity stmt } } [;]
activity_stmt ::=
activity if else stmt
| activity _repeat stmt
| activity constraint_stmt
| activity foreach_stmt
| activity action_traversal stmt
| activity_sequence block stmt
| activity select stmt
| activity parallel stmt
| activity schedule stmt

| activity _bind_stmt

Syntax 51—DSL.: activity statement

To assist in reuse and simplify the specification of repetitive behaviors in a single activity, a symbol may be
declared to represent a subset of activity functionality (see Syntax 52 or Syntax 54). The symbol may be
used as a node in the activity.

A symbol may activate another symbol, but symbols may not activate themselves (no recursion).

70 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

symbol _declaration ::= symbol identifier [(symbol_paramlist)] = activity _stmt
symbol paramlist ::= [symbol_param { , symbol_param }]
symbol param ::= data_type identifier

Syntax 52—DSL.: symbol declaration

12.2.2 C++ syntax

In C++, an activity is declared by instantiating the activity class.

The corresponding C++ syntax for Syntax 51 is shown in Syntax 53.

/// Declare an activity
class activity : public detail:: ActivityBase {
public:
// Constructor
template < class... R >
activity(R&&... /* detail::ActivityStmt */ r);
// Constructor
activity(const std::vector<detail:: ActivityStmt*>& stmts);
// Destructor
~activity();
15

Syntax 53—C++: activity statement

In C++, a symbol is created using a function that returns the sub-activity expression.

The corresponding C++ syntax for Syntax 52 is shown in Syntax 54.

using symbol = detail::ActivityStmt;

symbol symbolName (parameters...) { return (/* subactivity */) };

Syntax 54—C++: symbol declaration

12.2.3 Examples

Example 43 and Example 44 depict using a symbol. In this case, the desired activity is a sequence of choices
between aN and bN, followed by a sequence of CN actions. This statement could be specified in-line, but for
brevity of the top-level activity description, a symbol is declared for the sequence of aN and bN selections.
The symbol is then referenced in the top-level activity, which has the same effect as specifying the aN/bN
sequence of selects in-line.

Copyright © 2017 Accellera. All rights reserved. 71
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

72

Portable Test and Stimulus

component
action
action
action

action

a al, a2, a3;
b bl, b2, b3;
c cl, c2, c3;

symbol a_or_ b = {
select {al; bl; }
select {a2; b2; }

select {a3; b3; }

}
activity {
a_or_b;
cl;
c2;
c3;
}
}
}
Example 43—DSL.: Using a symbol
class A : public action { PSS _CTOR(A,action); };

type_decl<A> A decl;

class B :

public action { PSS _CTOR(B,action); };

type_decl B _decl;

class C :

public action { PSS_CTOR(C,action); };

type_decl<C> C_decl;

class top :

public action {

PSS_CTOR(top,action);
action_handle<A> al{"al"}, a2{"a2"}, a3{"'a3"};
action_handle b1{"b1"}, b2{"b2"}, b3{"b3"};
action_handle<C> c1{"'c1"}, c2{'"c2"}, c3{"c3"};
symbol a_ or b O {

return (

sequence {

select {al, b1},
select {a2, b2},
select {a3, b3}

}
):
}

activity a {
a_or_bQ,

};
¥

cl, c2, c3

type_decl<top> top_decl;

Example 44—C++: Using a symbol

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

12.3 Action scheduling statements

By default, action statements in an activity specify sequential behaviors, subject to data flow constraints. In
addition, there are several statements that allow additional scheduling semantics to be specified.

12.3.1 Action traversal statement

An action traversal statement designates the point in the execution of an activity where an action is
randomized and evaluated (see Syntax 55 or Syntax 56). The action being traversed may be an action-type
field that was previously declared. The action being traversed may also be specified by type, in which case
the action instance is anonymous.

12.3.1.1 DSL syntax

activity action_traversal stmt ::=
identifier [inline_with_constraint]
| do type_identifier [inline with constraint] ;
inline_with_constraint ::= with
{ { constraint_body item } }

| constant_expression

Syntax 55—DSL.: Variable traversal statement

identifier names a unique new variable in the context of the containing action type (in the first syntactic
variant) or a declared non-rand field of the containing action (in the second variant).

The following also apply.

a) Intuitively, the action variable is randomized and evaluated at the point in the flow where the state-
ment occurs. The variable may be of an action type or a data type declared with the action modifier.
In the latter case, it is randomized, but has no observed execution or duration.

b) An action instance may be traversed without explicitly creating an action handle by using the anon-
ymous action traversal variant, specifying the keyword do followed by the action-type specifier and
an optional in-line constraint. The anonymous action traversal statement is semantically equivalent
to an action traversal with the exception that it does not create an action handle that may be refer-
enced from elsewhere in the stimulus model.

c¢) Formally, a traverse statement is equivalent to the sub-activity of the specified action type, with the
optional addition of in-line constraints. The sub-activity is scheduled in accordance with the sched-
uling semantics (e.g., sequential or parallel) of the containing scope.

d) Other aspects that impact action-evaluation scheduling, are covered via binding inputs or outputs
(see Clause 9), resource claims (see Clause 10), or attribute value assignment (see Clause 8).

12.3.1.2 C++ syntax

The corresponding C++ syntax for Syntax 55 is shown in Syntax 56.

Copyright © 2017 Accellera. All rights reserved. 73
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

/// Declare an action handle
template<class T>
class action_handle : public detail::ActionHandleBase {
public:
action_handle();
action_handle(const scope& name);
action_handle(const action_handle<T>& a_action_handle);
action_handle<T> with (detail::AlgebExpr expr);
T* operator-> ();
T& operator™ ();
I

Syntax 56—C++: Variable traversal statement

12.3.1.3 Examples

Example 45 and Example 46 show an example of traversing an atomic action variable. Action A is an atomic
action, whose exec body block calls a PI function to set the value selected for field ¥1. Action B is a
compound action encapsulating an activity involving two invocations of action A. The default constraints for
A apply to the evaluation of al. An additional constraint is applied to a2, specifying that ¥1 shall be less
than 10. Execution of action B results in two calls to the set_val import function.

import void set_val(bit[3:0] pl);
action A {
rand bit[3:0] fl;

exec body {
set_val(fl);
}
}

action B {
A al, a2;

activity {
al;
a2 with {
fl < 10;
};
b
s

Example 45—DSL: Action traversal

74 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

import_func set_val { "set_val",
{ import_func::in<bit>("pl", width(3, 0)) }
}:
class A : public action {
PSS_CTOR(A,action);
rand_attr<bit> f1 {"f1", width(3, 0) };
exec e { exec::body,
set_val (1)
};
};
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B,action);
action_handle<A> al{"al"}, a2{"a2"};
activity a {
al,
a2.with(a2->fl < 10)
}:
}:
type_decl B _decl;

Example 46—C++: Action traversal

Example 47 and Example 48 show an example of traversing a compound action as well as a non-random
non-action field. The activity for action C traverses the non-random, non-action field max, then traverses the
action-type field b1. Evaluating this activity results in a value being selected for max, then the sub-activity

of b1 being evaluated, with al .1 constrained to be less than or equal to max.

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

75

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

76

Portable Test and Stimulus

action A {
rand bit[3:0] f1;

exec body {
set_val(fl);
}
}

action B {
A al, a2;

activity {
al;
a2 with {
fl < 10;
};
}
}

action C {

action bit[3:0] max ;

B bl;

activity {
max;
bl with {
al.fl <= max;
};
b
b

Example 47—DSL: Compound action traversal

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

import_func set_val { "set_val",
{ import_func::in<bit>("pl", width(3, 0)) }
}:
class A : public action {
PSS_CTOR(A,action);
rand_attr<bit> f1 {"f1", width(3, 0) };
exec e { exec::body,
set_val (1)
};
};
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B,action);
action_handle<A> al{"al"}, a2{"a2"};
activity a {
al,
a2.with(a2->fl < 10)
}:
}:
type_decl B _decl;
class C : public action {
PSS_CTOR(C,action);
action_attr<bit> max {"max", width(3, 0)};
action_handle bl1{"bl1"};
activity a {
sequence {
max,
bl.with(bl->a2->f1 <= max)
¥
}:
}:
type_decl<C> C_decl;

Example 48—C++: Compound action traversal

12.3.2 Sequential block

An activity sequence block statement specifies sequential scheduling between sub-activities (see Syntax 57
or Syntax 58).

12.3.2.1 DSL syntax

activity sequence block stmt ::=[sequence] { { activity labeled stmt } }

Syntax 57—DSL.: Activity sequence block

The following also apply.

a)

b)

Statements in a sequential block execute in order so one sub-activity completes before the next one
starts.

Formally, a sequential block specifies sequential scheduling between the sets of action-executions
per the evaluation of activity_stmt; .. activity_stmt,, keeping all scheduling dependencies within the
sets and introducing additional dependencies between them to obtain sequential scheduling (see
5.3.2).

Copyright © 2017 Accellera. All rights reserved. 77
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

¢) Sequential scheduling does not rule out other inferred dependencies affecting the nodes in these sub-
activities. In particular, there may be cases where additional action-executions need to be scheduled
in between sub-activities of subsequent statements.

12.3.2.2 C++ syntax

The corresponding C++ syntax for Syntax 57 is shown in Syntax 58.

/// Declare a sequence block
class sequence : public detail::ActivityStmt {
public:
// Constructor
template < class... R >
sequence(R&&... /* detail:: ActivityStmt */ r);
sequence(const std::vector<detail:: ActivityStmt*>& stmts);

|5

Syntax 58—C++: Activity sequence block

12.3.2.3 Examples

Assume A and B are action types that have no rules or nested activity (see Example 49 and Example 50).

Action my_test specifies one execution of action A and one of action B with the scheduling dependency
(A) -> (B); the corresponding observed behavior is {start A, end A, start B, end B}.

Now assume action B has a state precondition which only action C can establish. C may execute before,
concurrently to, or after A, but it shall execute before B. In this case the scheduling dependency relation
would include (A) -> (B) and (C) -> (B) and multiple behaviors are possible, such as {start C,
start A, end A, end C, start B, end B}.

Finally, assume also C has a state precondition which only A can establish. Dependencies in this case are
A) > (B), (A) -> (C) and (C) -> (B) (note that the first pair can be reduced) and,
consequently, the only possible behavior is {start A, end A, start C, end C, start B,
end B}.

action my_test {
A a;
B b;
activity {
a;
b;
}
};
Example 49—DSL: Sequential block
78 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<A> a{"a"'};
action_handle b{"b"};
activity act {
a,
b
}:
};
type_decl<my_test> my_test decl;

Example 50—C++: Sequential block

12.3.3 parallel

The parallel statement specifies sub-activities that execute concurrently (see Syntax 59 or Syntax 60).

12.3.3.1 DSL syntax

activity _parallel stmt ::= parallel { { activity labeled stmt } } [;]

Syntax 59—DSL: Parallel statement

The following also apply.

a)

b)

Parallel activities are invoked in a synchronized way and then proceed without further synchroniza-
tion until their completion. Parallel scheduling guarantees the invocation of an action in one activity
branch does not wait for the completion of any action in another.

Formally, the parallel statement specifies parallel scheduling between the sets of action-executions
per the evaluation of activity_stmt; .. activity_stmt,,, keeping all scheduling dependencies within the
sets, ruling out scheduling dependencies across the sets, and introducing additional scheduling
dependencies to initial action-executions in each of the sets to obtain a synchronized start (see
5.3.2).

12.3.3.2 C++ syntax

The corresponding C++ syntax for Syntax 59 is shown in Syntax 60.

/// Declare a parallel block
class parallel : public detail:: ActivityStmt {
public:

// Constructor

template < class... R >

parallel(R&&... /* detail::ActivityStmt */ 1);

parallel(const std::vector<detail:: ActivityStmt*>& stmts);

3

Syntax 60—C++: Parallel statement

Copyright © 2017 Accellera. All rights reserved. 79
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

12.3.3.3 Examples

Assume A, B, and C are action types that have no rules or nested activity (see Example 51 and Example 52).

The activity in action my_test specifies two dependencies (A) -> (B) and (A) -> (C). Since the
executions of both B and C have the exact same scheduling dependencies, their invocation is synchronized.

Now assume action type C inputs a buffer object and action B outputs the same buffer object type, and the
input of € is bound to the output of b. According to buffer object exchange rules, the inputting action needs
to be scheduled after the outputting action. But this cannot satisfy the requirement of parallel scheduling,
according to which an action in one branch cannot wait for an action in another. Thus, this activity shall be
illegal.

action my_test {
A a;
B b;
C c;
activity {
a,
parallel {
b;
C;
}
¥
}:

Example 51—DSL.: Parallel statement

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<A> a{"a"'};
action_handle b{"b"};
action_handle<C> c{""c"};
activity act {
a,
parallel {
b,
c
}
}:
};
type_decl<my_test> my_test decl;

Example 52—C++: Parallel statement

The semantics of the parallel construct require the sequences {a, b} and {c,d} to start execution at the
same time (see Example 53 and Example 54). The semantics of the sequential block require the execution
of b follows a and d follows c. It shall be illegal for a and d to be assigned the same instance of the
resource R, since they are executed in separate sub-blocks of the parallel statement and there may be no
scheduling dependencies between sub-blocks. Thus, if resource type R had one instance instead of four in
the code snippet, the activity specified in my_test would be illegal.

80 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

component top {
resource R {};
pool[4] R R_pool;
bind R_pool *;

action A { lock R r; }
action B {}
action C {}
action D { lock R r;}

action my_test {
activity {
parallel {
{do A; do B;}
{do C; do D;}
}
}
}

Example 53—DSL: Another parallel statement

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

81

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct R - public resource {
PSS_CTOR(R, resource);
};
type_decl<R> R_decl;
pool<R> R_pool{"R_pool", 4};
bind R_bind {R_pool};
class A : public action {
PSS_CTOR(A,action);
lock<R> r{"r"};
};
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B,action);
}:
type_decl B_decl;
class C : public action {
PSS_CTOR(C,action);
}:
type_decl<C> C_decl;
class D : public action {
PSS_CTOR(D,action);
lock<R> r{"r"};
}:
type_decl<D> D_decl;
class my_test : public action {
PSS_CTOR(my_test,action);
activity act {
parallel {
sequence {
action_handle<A>(),
action_handle()
}.
sequence {
action_handle<C>(),
action_handle<D>()
}
}
}:
}:
type_decl<my_test> my_test_decl;

Example 54—C++: Another parallel statement

12.3.4 schedule

The schedule statement specifies the PSS processing tool shall select a legal order in which to evaluate the

sub-activities, provided one exists. See Syntax 61 or Syntax 62.

12.3.4.1 DSL syntax

activity_schedule stmt ::= schedule { { activity labeled stmt } } [;]

Syntax 61—DSL: Schedule statement

The following also apply.

82 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

b)

All activities inside the schedule block need to execute, but the PSS processing tool is free to exe-
cute them in any order that satisfies their other scheduling requirements.

Formally, the schedule statement specifies the scheduling of the combined sets of action-executions
per the evaluation of activity_stmt; .. activity_stmt,,, keeping all scheduling dependencies within the
sets and introducing (at least) the necessary scheduling dependencies across the sets to comply with
the rules of input-output binding of actions and resource assignments.

12.3.4.2 C++ syntax

The corresponding C++ syntax for Syntax 61 is shown in Syntax 62.

/// Declare a schedule block
class schedule : public detail::ActivityStmt {
public:

// Constructor

template < class... R >

schedule(R&&... /* detail:: ActivityStmt */ 1);

schedule(const std::vector<detail:: ActivityStmt*>& stmts);

¥

Syntax 62—C++: Schedule statement

12.3.4.3 Examples

Consider the code in Example 55 and Example 56, which are similar to Example 51 and Example 52, but
use a schedule block instead of a paral el block. In this case, valid execution is as follows.

a)
b)

¢)

The sequence of action nodesa, b, c.
The sequence of action nodes a, €, b.

The sequence of action node a, followed by b and € run in parallel.

action my_test {
A a;
B b;
C c;
activity {
a;
schedule {
b;
C;

Example 55—DSL: Schedule statement

Copyright © 2017 Accellera. All rights reserved. 83
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<A> a{"a"'};
action_handle b{"b"};
action_handle<C> c{""c"};

activity act {
a,
schedule {
b,
c
}
}:
}:

type_decl<my_test> my_test decl;

Example 56—C++:; Schedule statement

In contrast, consider the code in Example 57 and Example 58. In this case, any execution order in which b
comes after a and d comes after C is valid. In particular, the following executions are valid.

a)
b)

c)

a, bfollowedbyc, d.
c, dfollowedbya, b.
a, binparallel withc, d.

If there were only a single instance of the R resource, a and d would have to execute sequentially. This is in
addition to the sequencing of @ and b and of ¢ and d. In this case, the above execution of a, b in parallel
with ¢, dis illegal.

84

component top {
resource R {}

pool[4] R R_pool;
bind R_pool *;

action A { lock r R; }
action B {}
action C {}
action D { lock r R;}

action my_test {
activity {
schedule {
{do A; do B;}
{do C; do D;}
}
}
}

Example 57—DSL: Scheduling block with sequential sub-blocks

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

struct R - public resource {
PSS_CTOR(R, resource);
};
type_decl<R> R_decl;
pool<R> R_pool{"R_pool", 4};
bind R_bind {R_pool};
class A : public action {
PSS_CTOR(A,action);
lock<R> r{"r"};
};
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B,action);
}:
type_decl B_decl;
class C : public action {
PSS_CTOR(C,action);
}:
type_decl<C> C_decl;
class D : public action {
PSS_CTOR(D,action);
lock<R> r{"r"};
}:
type_decl<D> D_decl;
class my_test : public action {
PSS_CTOR(my_test,action);
activity act {
schedule {
sequence {
action_handle<A>(),
action_handle()
}.
sequence {
action_handle<C>(),
action_handle<D>()
}
}
}:
}:
type_decl<my_test> my_test_decl;

Example 58—C++: Scheduling block with sequential sub-blocks

12.4 Activity control-flow constructs

The simplest activity procedural constructs are action instances listed sequentially in the activity clause.

These action instances are traversed sequentially. In addition to simple sequences, repetition and branching

statements can be used inside the activity clause.

12.4.1 repeat (count)

The repeat statement allows the specification of a loop consisting of one or more actions inside an activity.

This section describes the count-expression variant (see Syntax 63 or Syntax 64) and 12.4.2 describes the

while-expression variant.

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

85

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

12.4.1.1 DSL syntax

activity _repeat stmt ::= repeat ([identifier :] expression) activity sequence block stmt

Syntax 63—DSL.: repeat-count statement

The following also apply.
a) expression shall be a numeric type (int or bit).

b) Intuitively, the repeated block is iterated the number of times specified in the expression. An
optional index-variable identifier can be specified that ranges between O and one less than the itera-
tion count.

c) Formally, the repeat-count statement specifies sequential scheduling between N sets of action-exe-
cutions per the evaluation of activity_sequence_block_stmt N times, where N is the number to which
expression evaluates (see 5.3.2).

d) Note also the choice of values to rand attributes figuring in the expression need to be such that it
yields legal execution scheduling.

12.4.1.2 C++ syntax

The corresponding C++ syntax for Syntax 63 is shown in Syntax 64.

/// Declare a repeat statement
class repeat : public detail:: ActivityStmt {
public:
/// Declare a repeat statement
repeat(const detail:: AlgebExpr& count,
const detail::ActivityStmt& activity
);
/// Declare a repeat statement
repeat(const attr<int>& iter,
const detail:: AlgebExpr& count,
const detail:: ActivityStmt& activity

Syntax 64—C++: repeat-count statement

12.4.1.3 Examples

In Example 59 and Example 60, the resulting execution is six sequential action executions, alternating A’s
and B’s, with five scheduling dependencies: (Ajg) -> (Bio), (Big) -> (Aij), (Ai) —> (Bi2),
(Bi2) > (Ai2), (Biz) —> (Ajz).

86 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

action my_test {
A a;
B b;
activity {
repeat (3) {
a;
b;
}
¥
};

Example 59—DSL: repeat statement

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<A> a{"a"};
action_handle b{"b"};

activity act {
repeat { 3,
sequence {
a,
b
}
}
}:
}:
type_decl<my_test> my_test _decl;

Example 60—C++: repeat statement

Example 61 and Example 62 show additional example of using repeat-count.

action my_test {

my_actionl actionl;
my_action2 action?;
activity {

repeat (i : 10) {
if (% 4) ==0) {
actionl;

} else {

action2;

Example 61—DSL: Another repeat statement

Copyright © 2017 Accellera. All rights reserved. 87
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<my_actionl> actionl{"actionl"};
action_handle<my_action2> action2{"action2"};
attr<int> i {"i"};
activity act {
repeat { i, 10,
if_then_else {
(%4,
actionl,
action2
}
}
}:
}:
type_decl<my_test> my_test decl;

Example 62—C++: Another repeat statement

12.4.2 repeat while

In the repeat while and repeat ... while forms, iteration continues while the expression evaluates to true
(see Syntax 65 or Syntax 66). See also Example 63 and Example 64.

12.4.2.1 DSL syntax

activity repeat stmt ::=
repeat while (expression) activity sequence block stmt

| repeat activity sequence block stmt [while (expression) ;]

Syntax 65—DSL: repeat-while statement

The following also apply.
a) expression shall be of type bool.

b) Intuitively, the repeated block is iterated so long as the expression condition is true, as sampled
before the sequence block (in the first variant) or if after (in the second variant).

¢) Formally, the repeat-while statement specifies sequential scheduling between multiple sets of
action-executions per the iterative evaluation of activity _sequence_block_stmt. The evaluation of
activity_sequence_block_stmt continues repeatedly so long as expression evaluates to true.
expression is evaluated before the execution of each set in the first variant and after each set in the
second variant.

12.4.2.2 C++ syntax

The corresponding C++ syntax for Syntax 65 is shown in Syntax 66.

88 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

/// Declare a repeat while statement
class repeat_while : public detail::ActivityStmt {
public:
/// Declare a repeat while statement
repeat_while(const detail::AlgebExpr& cond,
const detail:: ActivityStmt& activity
);
15
/// Declare a do while statement
class do_while : public detail:: ActivityStmt {
public:
/// Declare a do while statement
do_while(const detail::ActivityStmt& activity,
const detail::AlgebExpr& cond

Syntax 66—C++: repeat-while statement

12.4.2.3 Examples

component top {
import bit is_last_one();

action do_something {
bit last one;

exec post_solve {
last_one = is_last_one();

}

exec body C =
printf("'Do Something\n');

}

action entry {
do_something s1;

activity {
repeat {
sl;
} while (Isl.last_one);
¥
b
s

Example 63—DSL: repeat while statement

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

89

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class top : public component {
public:
PSS_CTOR(top, component);

import_func is_last_one {"is_last_one",
import_func::result<bit>(), {}}:

class do_something : public action {
PSS_CTOR(do_something,action);
attr<bit> last_one {"last_one"};

exec pre_solve { exec::pre_solve,
last_one = type_decl<top>()->is_last_one()

¥

exec body { exec::body,

ner
"printF(\""Do Something\n\");"
}:
}:

type_decl<do_something> do_something_t;

class entry : public action {
PSS_CTOR(entry,action);
action_handle<do_something> s1{""s1"};

activity act {
do_while { s1,
sl->last_one = 0
}
}:
}:
type_decl<entry> entry_t;

}:

type_decl<top> top_t;

Example 64—C++: repeat while statement

12.4.3 foreach

The foreach construct iterates across the elements of an array (see Syntax 67 or Syntax 68). See also
Example 65 and Example 66.

12.4.3.1 DSL syntax

activity repeat stmt ::= foreach (expression) activity sequence block stmt

Syntax 67—DSL.: foreach statement

The following also apply.

a) expression shall be an array-index expression, where the index expression is the index-variable iden-
tifier.

920 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

b)

¢)

The body of the foreach statement is a sequential block that is evaluated once for each element in
the array. The index variable ranges between O and one less than the size of the array.

Formally, the foreach statement corresponds to N sequential evaluations of activity sequence_-

block_stmt, where N is size of the array.

12.4.3.2 C++ syntax

The corresponding C++ syntax for Syntax 67 is shown in Syntax 68.

June 14, 2017

/// Declare a foreach statement
class foreach : public detail::SharedExpr {
public:
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const rand_attr<vec<int>>& array,
const detail::ActivityStmt& activity
);
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const rand_attr<vec<bit>>& array,
const detail:: ActivityStmt& activity
)
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const attr<vec<int>>& array,
const detail:: ActivityStmt& activity
);
/// Declare a foreach activity statement
foreach(const attr<int>& iter,
const attr<vec<bit>>& array,

const detail:: ActivityStmt& activity

Syntax 68—C++: foreach statement

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

12.4.3.3 Examples

Portable Test and Stimulus

action my_actionl {

rand bit[0..3] val;
// ...
}
action my_test {
rand bit[0..3] a[16];
my_actionl actionl;
activity {

foreach (@[] {
actionl with { actionl.val <= a[j]; };
}
}

Example 65—DSL.: foreach statement

class my_actionl : public action {
PSS_CTOR(my_actionl,action);
rand_attr < bit > val {"val", range<bit> {0, 3} };
// ...

}:

type_decl<my_actionl> my_actionl_decl;

class my_test : public action {
PSS_CTOR(my_test,action);

rand_attr_vec<bit> a { "a", 16, range<bit> {0, 3} };
attr<bit> j {"j"};

action_handle<my_actionl> actionl{"'actionl"};

activity act {
foreach {j, a,
actionl.with(actionl->val < a[j])
}
}:
}:
type_decl<my_test> my_test decl;

Example 66—C++: foreach statement

12.4.4 select

The select statement specifies a branch point in the traversal of the activity (see Syntax 69 or Syntax 70).

92 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

12.4.4.1 DSL syntax

activity_select stmt ::= select { activity labeled stmt activity labeled stmt
{ activity labeled stmt } }

Syntax 69—DSL.: select statement

The following also apply.

a)
b)

Intuitively, a select statement executes one out of a number of possible activities.

Formally, each evaluation of a select statement corresponds to the evaluation of just one of the activ-
ity labled_stmts. All scheduling requirements shall hold for the selected activity statement. Ii shall
be illegal if no activity statement is valid according to the active constraint and scheduling require-
ments.

12.4.4.2 C++ syntax

The corresponding C++ syntax for Syntax 69 is shown in Syntax 70.

/// Declare a select statement
class select : public detail::ActivityStmt {
public:

template < class... R >

select(R&&... /* detail:: ActivityStmt */ r);

select(const std::vector<detail:: ActivityStmt*>& stmts);

¥

Syntax 70—C++: select statement

12.4.4.3 Examples

In Example 67 and Example 68, the select statement causes the activity to select actionl or action2
during each execution of the activity.

action my_test {
my_actionl actionl;
my_action2 action2;
activity {
select {
actionl;
action2;
}
¥
}

Example 67—DSL: Select statement

Copyright © 2017 Accellera. All rights reserved. 93
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class my_test : public action {
PSS_CTOR(my_test,action);
action_handle<my_actionl> actionl{"actionl"};
action_handle<my_action2> action2{"action2"};

activity act {
select {
actionl,
action2
¥
}:
}:
type_decl<my_test> my_test _decl;

Example 68—C++: Select statement

12.4.5 if-else

The if-else statement introduces a branch point in the traversal of the activity (see Syntax 71 or Syntax 72).

12.4.5.1 DSL syntax

activity if else stmt ::= if (expression) activity stmt [else activity stmt]

Syntax 71—DSL.: if-else statement

The following also apply.

a)
b)

©)

d)
e)

expression shall be of type bool.

Intuitively, an if-else statement executes some activity if a condition holds, and, otherwise (if speci-
fied), the alternative activity.

Formally, the if-else statement specifies the scheduling of the set of action-executions per the evalu-
ation of the first activity_stmt if expression evaluates to true or the second activity_stmt (following
else) if present and expression evaluates to False.

The scheduling relationships need only be met for one branch for each evaluation of the activity.
The choice of values to rand attributes figuring in the expression needs to be such that it yields
legal execution scheduling.

12.4.5.2 C++ syntax

The corresponding C++ syntax for Syntax 71 is shown in Syntax 72.

94

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Declare if-then statement
class if then : public detail::SharedExpr {
public:
/// Declare if-then activity statement
if then (const detail:: AlgebExpr& cond,
const detail:: ActivityStmt& true_expr
);
55
//] Declare if-then-else statement
class if then_else : public detail::SharedExpr {
public:
/// Declare if-then-else activity statement
if then_else (const detail:: AlgebExpr& cond,
const detail::ActivityStmt& true expr,
const detail:: ActivityStmt& false expr

Syntax 72—C++: if-else statement

12.4.5.3 Examples

If the scheduling requirements for Example 69 and Example 70 required selection of the b branch, then the
value selected for X needs to be <= 5.

action my_test {
rand int[1..10] x;
A a;
B b;
activity {
if (x >5)
a;
else
b;
}
}:

Example 69—DSL.: if-else statement

Copyright © 2017 Accellera. All rights reserved. 95
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class my_test : public action {
PSS_CTOR(my_test,action);

rand_attr<int> x { "x", range<>{ 1,10 } };
action_handle<A> a{"a"};
action_handle b{''b"};

activity act {
if_then_else {
> 5,

oo X|

}:
type_decl<my_test> my_test _decl;

Example 70—C++: if-else statement

12.5 Named sub-activities

Sub-activities are structured elements of an activity. Naming sub-activities is a way to specify a logical tree
structure of sub-activities within an activity. This tree serves for making hierarchical references, both to
action-handle variables declared in-line, as well as to the activity statements themselves. The hierarchical
paths thus exposed abstract from the concrete syntactic structure of the activity, since only explicitly labeled
statements constitute a new hierarchy level.

12.5.1 DSL syntax

A named sub-activity is declared by labeling an activity statement, see Syntax 73.

activity labeled stmt ::= [identifier : | activity stmt

Syntax 73—DSL: Labeled activity statement

12.5.2 Scoping rules for named sub-activities

Activity-statement labels shall be unique in the context of the containing named sub-activity—the nearest
lexically-containing statement which is labeled. Unlabeled activity statements do not constitute a separate
naming scope for sub-activities.

In Example 71, some activity statements are labeled while others are not. The second occurrence of
label 12 is conflicting with the first because the 1T statement under which the first occurs is not labeled and
hence is not a separate naming scope for sub-activities.

96 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

action A {};

action B {
int x;
activity {
11: parallel { // "117 is 1st level named sub-activity
if (x> 10) {
12: { 77 12" is 2nd level named sub-activity
A a;
a;
}
{

A a; // OK - this is a separate naming scope for variables
a,;
}

¥
12: { 7/ Error - this "12" conflicts with "12" above

A a;

Example 71—DSL: Scoping and named sub-activities

12.5.3 Hierarchical references using named sub-activity

Named sub-activities, introduced through labels, allow referencing action-handle variables using
hierarchical paths. References can be made to a variable from within the same activity, from the compound
action top-level scope, and from outside the action scope.

Only action-handles declared directly under a labeled activity statement can be accessed outside their direct
lexical scope. Action-handles declared in an unnamed activity scope cannot be accessed from outside that
scope.

Note that the top activity scope is unnamed. For an action-handle to be directly accessible in the top-level
action scope, or from outside the current scope, it needs to be declared at the top-level action scope.

In Example 72, action B declares action-handle variables in labeled activity statement scopes, thus
making them accessible from outside by using hierarchical paths. action C is using hierarchical paths to
constrain the sub-actions of its sub-actions b1 and b2.

Copyright © 2017 Accellera. All rights reserved. 97
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

action A { rand int x; };

action B {
A a;
activity {
a;
my_seq: sequence {
A a;
a;
parallel {
my_rep: repeat (3) {

A a;
a,
};
sequence { A a; a }; // this "a" is declared in unnamed scope
A a; // can"t be accessed from outside
a;
};
}:
}:
}:
}:
action C {
B bl, b2;
constraint bl.a.x == 1;
constraint bl.my _seq.a.x == 2;
constraint bl.my_seq.my_rep.a.x == 3; // applies to all three iterations
// of the loop
activity {
bl;
b2 with { my_seq.my rep.a.x == 4; }; // likewise
}
}:

Example 72—DSL: Hierarchical references and named sub-activities

12.6 Explicitly binding flow objects

Input and output objects may be explicitly connected to actions using the bind statement (see Syntax 74 or
Syntax 75).

12.6.1 DSL syntax

activity bind stmt ::= bind hierarchical id activity bind item or list ;
activity bind item or list ::=
hierarchical id
| { hierarchical id {, hierarchical id } }

Syntax 74—DSL.: bind statement

The following also apply.

98 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

It does not matter in which order the objects are listed, but they need to be of the same type and
match the type of the object defined in each action being connected. As discussed in 9.4, the con-
nection defines the data flow between actions and the type of the flow object defines the scheduling
and semantics of the connection.

12.6.2 C++ syntax

The corresponding C++ syntax for Syntax 74 is shown in Syntax 75.

public:

~bind();
¥

/// Declare a bind
class bind : public detail::BindBase {

/// Bind a resource to multiple targets

template <class R /*resource*/, typename... T /*targets™/ >
bind (const pool<R>& a_pool, const T&... targets);

/1l Explicit binding of action inputs and outputs

bind (const std::initializer list<detail::[OBase>& io_items);
/// Destructor

12.6.3 Examples

Syntax 75—C++: bind statement

Examples of binding are shown in Example 73 and Example 74.

action P {

};

action C {

};
action T {

P p;
Cc;

p,
(]

¥

struct S {};

input S in;

output S out;

bind p.out c.in;
activity {

Example 73—DSL.: bind statement

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

99

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

class S : public structure {
PSS_CTOR(S,structure);
}:
type_decl<S> S decl;
class P : public action {
PSS_CTOR(P,action);
output<S> out {"out'};
}:
type_decl<P> P_decl;
class C : public action {
PSS_CTOR(C,action);
input<S> in {"in"};
}:
type_decl<C> C_decl;
class T : public action {
PSS_CTOR(T,action);
action_handle<P> p {"p"};
action_handle<C> c {""c"};
bind bl { p->out, c->in };
activity act {
P,
c
}:
}:
type_decl<T> T _decl;

100

Example 74—C++: bind statement

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

13. Randomization specification constructs

Scenario properties can be expressed in PSS declaratively, as algebraic constraints over attributes of
scenario entities.

a) There are several categories of struct and action fields.

1) Random attribute field - a field of a plain-data type (e.g., bit) that is qualified with the rand
keyword.

2) Non-random attribute field - a field of a plain-data type (e.g., int) that is not qualified with the
rand keyword.

3) Sub-action field - a field of an action type or a plain-data type that is qualified with the action
keyword.

4) Input/output flow-object reference field - a field of a flow-object type that is qualified with the
input or output keyword.

5) Resource-claim reference field - a field of a resource-object type that is qualified with the lock
or share keyword.

b) Constraints may shape every aspect of the scenario space. In particular:
1) Constraints are used to determine the legal value space for attribute fields of actions.

2) Constraints affect the legal assignment of resources to actions and, consequently, the schedul-
ing of actions.

3) Constraints may restrict the possible binding of actions’ inputs to actions’ outputs, and, thus,
possible action inferences from partially specified scenarios.

4) Constraints determine the association of actions with context component instances.

5) Constraints may be used to specify all of the above properties in a specific context of a higher
level activity encapsulated via a compound action.

6) Constraints may also be applied also to the operands of control flow statements—determining
loop count and conditional branch selection.

Constraints are typically satisfied by more than just one specific assignment. There is often room for
randomness or the application of other considerations in selecting values. The process of selecting values for
scenario variables is called constrained-randomization or simply randomization.

Randomized values of variables become available in the order in which they are used in the execution of a
scenario, as specified in activities. This provides a natural way to express and reason about the
randomization process. It also guarantees values sampled from the environment and fed back into the PSS
domain during the generation and/or execution have clear implications on subsequent evaluation. However,
this notion of ordering in variable randomization does not introduce ordering into the constraint system—the
solver is required to look ahead and accommodate for subsequent constraints.

13.1 Algebraic constraints
13.1.1 Member constraints

PSS supports two types of constraint blocks as action/struct members: static constraints that always hold
and dynamic constraints that only hold when they are traversed in the activity (see Syntax 76 or Syntax 77).

NOTE—As shown in 13.3.9, named dynamic constraints may be referenced as a node inside an activity.

Copyright © 2017 Accellera. All rights reserved. 101
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

13.1.1.1 DSL syntax

constraint_declaration ::=
[dynamic] constraint identifier { { constraint_body item } }
| constraint { { constraint body item } }
| constraint single stmt constraint
constraint_body_item ::=
expression_constraint_item
| foreach_constraint_item

| if constraint item

| unique_constraint_item
Syntax 76—DSL: Member constraint declaration

13.1.1.2 C++ syntax

The corresponding C++ syntax for Syntax 76 is shown in Syntax 77.

/// Declare a member constraint
class constraint : public detail::ConstraintBase {
public:
/// Declare an unnamed member constraint
template <class... R> constraint (
const R&... /*detail:: AlgebExpr*/ expr
);
/// Declare a named member constraint
template <class... R> constraint (const std::string& name,
const R&... /*detail:: AlgebExpr*/ expr
);
55
/// Declare a dynamic member constraint
class dynamic_constraint : public detail::DynamicConstraintBase {
public:
/// Declare a named dynamic member constraint
template <class... R> dynamic_constraint (
const std::string& name,
const R&... /*detail:: AlgebExpr*/ expr
);
|5

Syntax 77—C++: Member constraint declaration

102 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

13.1.1.3 Examples

June 14, 2017

Example 75 and Example 76 declare a static constraint block, while Example 77 and Example 78 declare a

dynamic constraint block. In the case of the static constraint, the name is optional.

action A {
rand bit[31:0] addr;

constraint addr_c {
addr == 0x1000;
}
}

Example 75—DSL.: Declaring a static constraint

class A : public action {
public:
PSS_CTOR(A,action);

rand_attr < bit > addr {"addr", width {31, 0O} };
constraint addr_c { "addr_c'", addr == 0x1000 };
}:
type_decl<A> A decl;

Example 76—C++: Declaring a static constraint

action B {
action bit[31:0] addr;

dynamic constraint dyn_addrl_c {
addr inside [0x1000..0x1FFF];

}

dynamic constraint dyn_addr2_c {
addr inside [0x2000..0x2FFF];

}

Example 77—DSL: Declaring a dynamic constraint

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

103

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class B : public action {
public:
PSS_CTOR(B,action);
action_attr< bit > addr {"addr', width {31, 0} };

dynamic_constraint dyn_addrl_c { "dyn_addrl_c",
inside (addr, range<bit> (0x1000, Ox1fff))
}:

dynamic_constraint dyn_addr2_c { "dyn_addr2_c",
inside (addr, range<bit> (0x2000, Ox2fff))
};
};
type_decl B _decl;

Example 78—C++: Declaring a dynamic constraint

13.1.2 Constraint inheritance

Constraints, like other action/struct-members, are inherited from the super-type. An action/struct subtype
has all of the constraints declared in the context of its super-type or inherited by it. A constraint
specification overrides a previous specification if the constraint name is identical. For a constraint override,
only the most specific property holds; any previously specified properties are ignored. Constraint
inheritance and override applies in the same way to static constraints and dynamic constraints. Unnamed
constraints shall not be overridden.

Example 79 and Example 80 illustrate a simple case of constraint inheritance and override. Instances of
struct corrupt_data_buff satisfy the unnamed constraint of data_buff based on which size is
inside 1..1024. Additionally, Size is greater than 256, as specified in the subtype. Finally, per
constraint Size_al ign as specified in the subtype, Size divided by 4 has a reminder of 1.

buffer data_buff {
rand iInt size;
constraint size_inside inside [1..1024];
constraint size_align { size¥%4 == 0; } // 4 byte aligned
}
buffer corrupt_data_buff : data buff {
constraint size_align { size%4 == 1; } //overrides alignment 1 byte
off
constraint corrupt_data_size { size > 256; } // additional
constraint
}
Example 79—DSL.: Inheriting and overriding constraints
104 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

struct data_buf : public buffer {
PSS_CTOR(data_buf,buffer);

rand_attr<int> size {'size"};
constraint size_inside { "size_inside", inside(size, range<>(1,1024)
) X
constraint size_align { "size_align"™, size % 4 == 0 };
};
type_decl<data_buf> data_buf_decl;
struct corrupt_data_buf : public data buf {
PSS_CTOR(corrupt_data_buf,data_buf);

constraint size_align { "size_align™, size % 4 == 1 };
constraint corrupt_data_size { "corrupt_data_size"™, size > 256 };
};
type_decl<corrupt_data_buf> corrupt_data buf _decl;

Example 80—C++: Inheriting and overriding constraints

13.1.3 Action-traversal in-line constraints

Constraints on sub-action data attributes can be in-lined directly in the context of an action-traversal-
statement in the activity clause (for syntax and other details, see 12.3.1).

In the context of in-line constraints, attribute field paths of the traversed sub-action can be accessed without
the sub-action field qualification. Fields of the traversed sub-action take precedence over fields of the
containing action. Other attribute field paths are evaluated in the context of the containing action. In cases
where the containing-action fields are shadowed by fields of the traversed sub-action, they can be explicitly
accessed using built-in variable this. In particular, fields of the context component of the containing action
need to be accessed using the prefix path this.comp (see also Example 83 and Example 84).

If a sub-action field is traversed uniquely by a single traversal statement in the activity clause, in-lining a
constraint has the same effect as declaring the same member constraint on the sub-action field of the
containing action. In cases where the same sub-action field is traversed multiple times, in-line constraints
apply only to the specific traversal in which they occur.

Unlike member constraints, in-line constraint are evaluated in the specific scheduling context of the action-
traversal-statement. If attribute fields of sub-actions other than the one being traversed occur in the
constraint, these sub-action fields have already been traversed in the activity. In cases where a sub-action
field has been traversed multiple times, the most recently selected values are considered.

Example 81 and Example 82 illustrate the use of in-line constraints. The traversal of a3 is illegal, because
the path a4 . F occurs in the in-line constraint, but a4 has not yet been traversed at that point. Constraint C2,
in contrast, equates al. ¥ with a4 . without having a specific scheduling context, and is, therefore, legal
and enforced.

Copyright © 2017 Accellera. All rights reserved. 105
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

action A {
rand bit[3:0] T;
};

action B {
A al, a2, a3, a4;

constraint cl { al.f inside [8..15]; };
constraint c2 { al.f == a4.f; };

activity {
al;
a2 with {
T inside [8..15]; // same effect as constraint cl has on al
};
a3 with {
f == a4.f; // illegal - a4.f is unresolved at this point
}:
a4;
}
};

Example 81—DSL: Action traversal in-line constraint

class A : public action {
PSS_CTOR(A,action);
rand_attr< bit > ¥ {"f", width(3, 0)};
}:
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B,action);
action_handle<A> al{"al"}, a2{"a2"}, a3{"a3"}, a4{"'ad"};

constraint cl1 { "c1", inside (al->f, range<bit>(8, 15)) };
constraint c2 { "'c2", al->f == a4->fF };

activity a {
al,
a2.with (
inside { a2->f, range<bit>(8,15) }
),
a3.with (
a3->f == a4->f
),
a4
}:
}:
type_decl B _decl;

Example 82—C++: Action traversal in-line constraint

Example 83 and Example 84 illustrate different name resolutions within an in-line with clause.

106

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

component subc {
action A {
rand int f;
rand int g;
}
}

component top {
subc subl, sub2;
action B {
rand int f;
rand Int h;
A a;

activity {
a with {
f < h; // sub-action®s ¥ and containing action®"s h
g == this.f; // sub-action®s g and containing action®s f
comp == this.comp.subl; // sub-action®s component is
// sub-component "subl® of the
// parent action®s component

Example 83—DSL.: Variable resolution inside with constraint block

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

107

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class subc : public component {
PSS_CTOR(subc,component) ;
class A : public action {
PSS_CTOR(A,action);
rand_attr<int> ¥ {"f"};
rand_attr<int> g {"g"};
}:
type_decl<A> A decl;
}-

type_decl<subc> subc_decl;

class top : public component {
PSS_CTOR(top,component) ;
comp_inst<subc> subl {“subl"}, sub2 {“sub2"}
class B : public action {
PSS_CTOR(B,action);
rand_attr<int> f {"f"};
rand_attr<int> h {"h"};
action_handle<subc::A> a{"a"};
activity act {
a.with (
(a->f < h) &&
&& (a->g ==) &&

)
};
};
type_decl B _decl;
};
type_decl<top> top_decl;

&& (a->comp() == static_cast<top*>(comp().-val())->subl)

Example 84—C++: Variable resolution inside with constraint block

13.1.4 Set membership expression

The inside expression defines the value of the referenced attribute field to be a member of the specified set.

Syntax 78 or Syntax 79 shows the syntax for a set membership (inside) expression.

13.1.4.1 DSL syntax

logical inequality expr ::=binary_shift expr {
<|<=|>|>=binary_shift expr
| inside [open_range list] }
open_range list ::= open_range value {, open range value }

open_range value ::= expression [.. expression |

Syntax 78—DSL.: Set membership expression

13.1.4.2 C++ syntax

The corresponding C++ syntax for Syntax 78 is shown in Syntax 79.

108 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Declare a set membership
class inside : public detail::AlgebExpr {
public:
inside (const attr<int>& a_var,
const range<int>& a_range
)
inside (const attr<bit>& a_var,
const range<bit>& a_range
);
inside (const rand_attr<int>& a_var,
const range<int>& a_range
)
inside (const rand_attr<bit>& a_var,
const range<bit>& a_range
)i
template < class T>
inside (const rand_attr<T>& a_var,
const range<T>& a range
);
template < class T>
inside (const attr<T>& a_var,

const range<T>& a_range

Syntax 79—C++: Set membership expression

13.1.4.3 Examples

Example 85 and Example 86 constrain the addr attribute field to the range 0X0 . . OXFFFF.

constraint addr_c {
addr inside [0x0000..0xFFFF];

}

Example 85—DSL.: inside constraint

constraint addr_c { "addr_c",
inside (addr, range<bit>(0x0000, OxFFFF))
};

Example 86—C++: inside constraint

Copyright © 2017 Accellera. All rights reserved. 109
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

13.1.5 Implication constraint

Conditional constraints can be specified using the implication operator (->). Syntax 80 shows the syntax for
an implication constraint.

13.1.5.1 DSL syntax

expression_constraint_item ::= expression
implicand constraint_item
|5

implicand constraint item ::= -> constraint_set

Syntax 80—DSL: Implication constraint

expression can be any integral expression. constraint_set represents any valid constraint or an unnamed
constraint set.
The following also apply.

a) The Boolean equivalent of the implication operatora -> bis (Ya || b). This states that if the
expression is vacuously true, then the random values generated are constrained by the constraint (or
constraint set). Otherwise, the random values generated are unconstrained.

b) If the expression is true, all of the constraints in the constraint set shall also be satisfied.

¢) The implication constraint is bidirectional.
13.1.5.2 C++ syntax
C++ uses the I F_then construct to represent implication constraints.
The Boolean equivalent of if_then(a, b)is ('a || b).
13.1.5.3 Examples

Consider Example 87 and Example 88. Here, b is forced to have the value 1 whenever the value of the
variable a is greater than 5. However, since the constraint is bidirectional, if b has the value 1, then the
evaluation expression (! (a>5) || (b==1)) is true, so the value of a is unconstrained. Similarly, if b
has a value other than 1, ais <= 5.

struct impl_s {

rand bit[7:0] a, b;
constraint ab_c {
(a@a>5) ->b ==1;
}
}
Example 87—DSL: Implication constraint
110 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

class impl_s : public structure {
PSS_CTOR(impl_s, structure);
rand_attr<bit> a {"a", width(7,0)}, b {"b", width(7,0)};
constraint ab_c {
if_then {
a>>5,
b ==
}
};
};

type_decl<impl_s> impl_s_decl;

Example 88—C++: Implication constraint

13.1.6 if-else constraint
Conditional constraints can be specified using the if and if-else constraint statements.

Syntax 81 or Syntax 82 shows the syntax for an if-else constraint.

13.1.6.1 DSL syntax

if constraint_item ::= if (expression) constraint_set [else constraint_set |

Syntax 81—DSL: Conditional constraint

expression can be any integral expression. constraint_set represents any valid constraint or an unnamed

constraint set.

The following also apply.

a) If the expression is true, all of the constraints in the first constraint_set shall be satisfied; other-

wise, all the constraints in the optional else constraint_set shall be satisfied.
b) Constraint sets may be used to group multiple constraints.

¢) Just like implication (see 13.1.5), if-else style constraints are bidirectional.

13.1.6.2 C++ syntax

The corresponding C++ syntax for Syntax 81 is shown in Syntax 82.

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

111

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

/// Declare if-then statement
class if _then : public detail::SharedExpr {
public:
/// Declare if-then constraint statement
if then (const detail:: AlgebExpr& cond,
const detail::AlgebExpr& true_expr
);
55
//] Declare if-then-else statement
class if then_else : public detail::SharedExpr {
public:
/// Declare if-then-else constraint statement
if then_else (const detail:: AlgebExpr& cond,
const detail::AlgebExpr& true_expr,
const detail:: AlgebExpr& false_expr

Syntax 82—C++: Conditional constraint

13.1.6.3 Examples

In Example 89 and Example 90, the value of a constrains the value of b and the value of b constrains the
value of a.

Attribute a cannot take the value O because both alternatives of the if-else constraint preclude it. The
maximum value for attribute b is 4, since in the §F alternative it is 1 and in the e I Se alternative it is less
than a, which itself is <= 5.

In evaluating the constraint, the §¥-clause evaluates to '(a>5) || (b==1). If a is in the range
{1,2,3,4,5}, then the ! (&>5) expression is TRUE, so the (b==1) constraint is ignored. The else-
clause evaluates to ! (a<=5), which is FALSE, so the constraint expression (b<a) is TRUE. Thus, b is in
the range {0. . (a-1)}. Ifais 2, then b is in the range {0,1}. Ifa > 5,then b is 1.

However, if b is 1, the (b==1) expression is TRUE, so the I (a>5) expression is ignored. At this point,
either 1 (a<=5) ora > 1, which means that a is in the range {2,3, .. 255}.

112 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

struct if_else_s {
rand bit[7:0] a, b;

constraint ab_c {
if (a>5) {
b == ;
} else {
b < a;
}
}
}

Example 89—DSL.: if constraint

struct if_else_s : public structure {
PSS_CTOR(if_else_s, structure);
rand_attr<bit> a{"a", width(7,0)} , b{"b", width(7,0)};

constraint ab_c {
if_then_else {
a>>5,
b ==1,
b<a
}
}:
};

type_decl<if_else_s> if_else_s_decl;

Example 90—C++: if constraint

13.1.7 foreach constraint
Elements of arrays can be iteratively constrained using the foreach constraint.

Syntax 83 or Syntax 84 shows the syntax for a foreach constraint.

13.1.7.1 DSL syntax

foreach constraint item ::= foreach (expression) constraint_set

Syntax 83—DSL: foreach constraint

expression can be any integral expression. constraint_set represents any valid constraint or an unnamed
constraint set.

The following also apply.
a) If the expression is true, all of the constraints in constraint_set shall be satisfied.

b) Constraint sets may be used to group multiple constraints.
13.1.7.2 C++ syntax

The corresponding C++ syntax for Syntax 83 is shown in Syntax 84.

Copyright © 2017 Accellera. All rights reserved. 113
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

/// Declare a foreach statement
class foreach : public detail::SharedExpr {
public:
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const rand_attr<vec<int>>& array,
const detail:: AlgebExpr& activity
);
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const rand_attr<vec<bit>>& array,
const detail::AlgebExpr& activity
);
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const attr<vec<int>>& array,
const detail::AlgebExpr& activity
);
/// Declare a foreach constraint statement
foreach(const attr<int>& iter,
const attr<vec<bit>>& array,

const detail::AlgebExpr& activity

Syntax 84—C++: foreach constraint

13.1.7.3 Examples

Example 91 and Example 92 show an iterative constraint that ensures that the values of the elements of a

fixed-size array increment.

struct foreach_s {
rand bit[9:0] fixed_arr[10];

constraint fill_arr_elem_c {
foreach (Fixed_arr[i]) {
if (i >0) {
fixed_arr[i] > fixed_arr[i-1];
}
}
}
}

114

Example 91—DSL.: foreach iterative constraint

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard June 14, 2017

class foreach_s : public structure {
PSS_CTOR(foreach_s, structure);
rand_attr_vec<bit> fixed_arr {"fixed_arr"”, 10, width(9,0) };
attr<int> i {"i"};
constraint Fill_arr_elem_c { "fill_arr_elem_c",
foreach { i1, fixed_arr,
/// TODO: if_then is SharedExpr and we don"t know if we are
/// building a AlgebExpr or an ActivityStmt
/// leads to ambiguous overload compiler error
// if_then {
// i>0,
fixed_arr[i] > fixed_arr[i-1]
/7 }
}
};
};

type_decl<foreach_s> foreach_s_decl;

Example 92—C++: foreach iterative constraint

13.1.8 Unique constraint
The unique constraint causes unique values to be selected for each element in the specified set.

Syntax 85 or Syntax 86 shows the syntax for a unique constraint.

13.1.8.1 DSL syntax

unique_constraint_item ::= unique { hierarchical id {, hierarchical id } } ;

Syntax 85—DSL.: unique constraint

13.1.8.2 C++ syntax

The corresponding C++ syntax for Syntax 85 is shown in Syntax 86.

/// Declare an unique constraint
class unique : public detail::AlgebExpr {
public:

/// Declare unique constraint

template < class ... R >

unique (const R&& ... /* rand_attr <T> */r);

¥

Syntax 86—C++: unique constraint

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

115

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

13.1.8.3 Examples

Example 93 and Example 94 force the solver to select unique values for the random attribute fields A, B, and
C. The unique constraint is equivalent to the following constraint statement: ((A 1= B) && (A I=
C) && (B = 0)).

struct my_struct {
rand bit[0..15] A, B, C;
constraint unique_abc_c {
unique {A, B, C};
}

}

Example 93—DSL: Unique constraint

class my_struct : public structure {
PSS_CTOR(my_struct, structure);
rand_attr<bit> A {"A", range<bit>(0,15) },
B {"B", range<bit>(0,15) },
C {"C", range<bit>(0,15) };
constraint unique_abc_c {'unique_abc_c",
unique {A, B, C};
}:
};

type_decl<my_struct> my_action_decl;

Example 94—C++: Unique constraint

13.2 Scheduling constraints

Scheduling constraints relate two or more actions or sub-activities from a scheduling point of view.
Scheduling constraints do not themselves introduce new action traversals. Rather, they affect actions
explicitly traversed in contexts that do not already dictate specific relative scheduling. Such contexts
necessarily involve actions directly or indirectly under a schedule statement (see 12.3.4). Similarly,
scheduling constraints can be applied to named sub-activities, see Syntax 87.

13.2.1 DSL syntax

scheduling_constraint ::= constraint (parallel | sequence)
{ hierarchical _id, hierarchical id {, hierarchical id } } ;

Syntax 87—DSL.: Scheduling constraint statement

The following also apply.

a) constraint sequence schedules the related actions so that each completes before the next one starts
(equivalent to a sequential activity block, see 12.3.2).

b) constraint parallel schedules the related actions such that they are invoked in a synchronized way
and then proceed without further synchronization until their completion (equivalent to a parallel
activity statement, see 12.3.3).

¢) Scheduling constraints may not be applied to action-handles that are traversed multiple times. In
particular, they may not be applied to actions traversed inside an iterative statement: repeat, repeat

116 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

while, and foreach (see 12.4). However, the iterative statement itself, as a named sub-activity, can
be related in scheduling constraints.

d) Scheduling constraints involving action-handle variables that are not traversed at all, or are traversed
under branches not actually chosen from select or if statements (see 12.4), hold vacuously.

e) Scheduling constraints shall not undo or conflict with any scheduling requirements of the related
actions.

13.2.2 Example

Example 95 demonstrates the use of a scheduling constraint. In it, compound action my_sub_flow
specifies an activity in which action a is executed, followed by the group b, ¢, and d, with an unspecified
scheduling relation between them. Action my_top_flow schedules two executions of my_sub_Flow,
relating their sub-actions using scheduling constraints.

action my_sub_flow {
A a; Bb; Cc; D d;

activity {
sequence {
a;
schedule {
b; c; d;
}:

action my_top_flow {
my_sub_flow sfl, sf2;

activity {
schedule {
sfl;
sf2;
}:
};

constraint sequence {sfl.a, sf2.b};
constraint parallel {sfl.b, sf2_.b, sf2.d};

Example 95—DSL: Scheduling constraints

13.3 Randomization process

PSS supports randomization of plain data models associated with scenario elements, as well as
randomization of different relations between scenario elements, such as scheduling, resource allocation, and
data flow. Moreover, the language supports specifying the order of random value selection, coupled with the
flow of execution, in a compound action’s sub-activity, the activity clause. Activity-based random value
selection is performed with specific rules to simplify activity composition and reuse and minimize
complexity for the user.

Copyright © 2017 Accellera. All rights reserved. 117
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

Random attribute fields of struct type are randomized as a unit. Traversal of a sub-action field triggers
randomization of random attribute fields of the action and the resolution of its flow/resource object
references. This is followed by evaluation of the action’s activity if the action is compound.

13.3.1 Random attribute fields
This section describes the rules that govern whether an element is considered randomizable.

13.3.1.1 Semantics

a) Struct attribute fields qualified with the rand keyword are randomized if a field of that struct type is
also qualified with the rand keyword.

b) Action attribute fields qualified with the rand keyword are randomized at the beginning of action
execution. In the case of compound actions, rand attribute fields are randomized prior to the execu-
tion of the activity and, in all cases, prior to the execution of the action’s exec blocks (except
pre_solve, see 13.3.10).

NOTE—It is often helpful to directly traverse attribute fields within an activity. This is equivalent to creating an inter-
mediate action with a random attribute field of the plain-data type.

13.3.1.2 Examples

In Example 96 and Example 97, struct S1 contains two attribute fields. Attribute field a is qualified with the
rand keyword, while b is not. Struct S2 creates two attribute fields of type S1. Attribute field s1_1 is also
qualified with the rand keyword. s1_1.a will be randomized, while s1_1.b will not. Attribute field
s1_2 is not qualified with the rand keyword, so neither s1_2.a nor s1_2.b will be randomized.

struct S1 {
rand bit[3:0] a;
bit[3:0] b;
}
struct S2 {
rand S1 sl 1;
S1 sl 2;
}

Example 96—DSL: Struct rand and non-rand fields

class S1 : public structure {
PSS_CTOR(S1,structure);
rand_attr<bit> a { "a", width(3,0) };
attr<bit> b { "b", width (3,0) };

}:

type_decl<S1> S1_decl;

class S2 : public structure {
PSS_CTOR(S2,structure);
rand_attr<S1> sl 1 {"sl1_1"};
attr<Sl> sl 2 {"sl1l_2"};

}:

type_decl<S2> S2_decl;

Example 97—C++: Struct rand and non-rand fields

118 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Example 98 and Example 99 show two actions, each containing a rand-qualified data field (A: :a and
B: :b). Action B also contains two fields of action type A (a_1 and a_2). When action B is executed, a
value is assigned to the random attribute field b. Next, the activity body is executed. This involves
assigning a value to a_1.a and subsequently toa_2.a.

action A {
rand bit[3:0] a;
}

action B {
A al, a 2;
rand bit[3:0] b;

activity {
al;
a_2;
}
}

Example 98—DSL.: Action rand-qualified fields

class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> a {"a", width(3,0) };
}:
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B, action);
action_handle<A> a_1 { "a_1"}, a_ 2 {"a 2"};
rand_attr<bit> b { "b", width (3, 0) };
activity act {
al,
a2
}:
};
type_decl B_decl;

Example 99—C++: Action rand-qualified fields

Example 100 and Example 101 show an action-qualified field in action B named a_bit. The PSS
processing tool assigns a value to a_bit when it is traversed in the activity body. The semantics are
identical to assigning a value to the rand-qualified action field A: Za.

Copyright © 2017 Accellera. All rights reserved. 119
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

action A {
rand bit[3:0] a;
}

action B {
action bit[3:0] a_bit;
A a_l;

activity {
a _bit;
al;
}
}

Example 100—DSL.: Action-qualified data fields

class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> a {"a", width(3,0) };
};
type_decl<A> A decl;
class B : public action {
PSS_CTOR(B, action);
action_attr<bit> a_bit { "a bit", width (3, 0) };
action_handle<A> a_1 { "a_1"};
activity act {
a_bit,
a_l
}:
}:
type_decl B_decl;

Example 101—C++; Action-qualified fields

13.3.2 Randomization of flow objects

When an action is randomized, its input and output fields are assigned a reference to a flow object of
the respective type. On entry to any of the action’s exec blocks (except pre_solve, see 17.5), as well as its
activity clause, values for all rand data-attributes accessible through its inputs and outputs fields are
resolved. The values accessible in these contexts satisfy all constraints. Constraints can be placed on
attribute fields from the immediate type context, from a containing struct or action at any level or via the
input/output fields of actions.

The same flow object may be referenced by an action outputting it and one or more actions inputting it. The
binding of inputs to outputs may be explicitly specified in an activity clause or may be left unspecified. In
cases where binding is left unspecified, the counterpart action of a flow object’s input/output may already be
one explicitly traversed in an activity or it may be introduced implicitly by the PSS processing tool to satisfy
binding rules (see 9.5). In all of these cases, value selection for the data-attributes of a flow object need to
satisfy all constraints coming from the action that outputs it and actions that input it.

Consider the model in Example 102 and Example 103. Assume a scenario is generated starting from action
test. Action wr of type writel is scheduled, followed by action rd of type read. When rd is
randomized, its input in_obj needs to be resolved. Every buffer object shall be the output of some action.
The activity does not explicitly specify the binding of rd’s input to any action’s output, but it needs to be

120 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

resolved regardless. Action Wr outputs an mem_obJ whose val is in the range 1. .5, due to a constraint in
action writel. But, val of the mem_obj instance rd inputs need to be in the range 8..12. So
rd.in_obj cannot be bound to wr.out_obj without violating a constraint. The PSS processing tool
needs to schedule another action of type write2 at some point prior to rd, whose mem_obj is bound to
rd’s input. In selecting the value of rd. input.val, the PSS processing tool needs to consider the
following.

— val is an even integer, due to the constraint in mem_obj.

— val isinside 6. . 10, due to a constraint in write2.

— val isinside 8. .12. due to a constraint in read.

This restricts the legal values of rd. in_obj .val to either 8 or 10.

component top {
buffer mem_obj {
int val;
constraint val%2 == 0; // val must be even

}

action writel {
output mem_obj out_obj;
constraint out_obj.val inside [1..5];

}

action write2 {
output mem_obj out_obj;
constraint out_obj.val inside [6..10];

}

action read {
input mem_obj in_obj;
constraint in_obj.val inside [8..12];

}
action test {
activity {
do writel;
do read;
}

Example 102—DSL: Randomizing flow object attributes

Copyright © 2017 Accellera. All rights reserved. 121
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class mem_obj : public buffer {
public:
PSS_CTOR(mem_obj, buffer);
attr<int> val {"val"};
constraint ¢ {
val%2 == 0 // val must be even
}:
}:
type_decl<mem_obj> mem _obj decl;
class writel : public action {
public:
PSS_CTOR(writel, action);
output<mem_obj> out_obj {"out_obj"};
constraint c {
inside(out_obj->val, range<>(1,5))
};
}:
type_decl<writel> writel_decl;
class write2 : public action {
public:
PSS_CTOR(write2, action);
output<mem_obj> out_obj {"out_obj"};
constraint ¢ {
inside(out_obj->val, range<>(6,10))
}:
}:
type_decl<write2> write2_decl;
class read : public action {
public:
PSS_CTOR(read, action);
input<mem_obj> in_obj {"in_obj"};
constraint c {
inside(in_obj->val, range<>(8,12))
};
}:
type_decl<read> read_decl;
class test : public action {
PSS_CTOR(test, action);
activity _activity {
action_handle<writel>(),
action_handle<read>()
};
}:
type_decl<test> test_decl;

Example 103—C++: Randomizing flow object attributes

13.3.3 Randomization of resource objects

When an action is randomized, its resource-claim fields (of resource type declared with lock / share
modifiers, see 10.1) are assigned a reference to a resource object of the respective type. On entry to any of
the action’s exec blocks (except pre_solve, see 17.5) or its activity clause, values for all random attribute
fields accessible through its resource fields are resolved. The same resource object may be referenced by any
number of actions, given that no two concurrent actions lock it (see 10.2). Value selection for random
attribute fields of a resource object satisfy constraints coming from all actions to which it was assigned,
either in lock or share mode.

122 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Consider the model in Example 104 and Example 105. Assume a scenario is generated starting from action
test. In this scenario, three actions are scheduled to execute in parallel: a1, a2, and a3. Action a3 of
type do_something_else shall be exclusively assigned one of the two instances of resource type
rsrc_obj, since do_something_else claims it in lock mode. Therefore, the other two actions, of
type do_something, necessarily share the other instance. When selecting the value of attribute kind for
that instance, the PSS processing tool needs to consider the following constraints.

kind is an enumeration whose domain has the values A, B, C, and D.
kind is not A, due to a constraint in do_something.

al.my rsrc_inst is referencing the same rsrc_obj instance as a2.my_rsrc_inst, as
there would be a resource conflict otherwise between one of these actions and a3.

kind is not B, due to an in-line constraint on al.

kind is not C, due to an in-line constraint on a2.

D is the only legal value foral.my_rsrc_inst.kind and a2.my_rsrc_inst.kind

component top {
enum rsrc_kind_e {A, B, C, D};

resource rsrc_obj {
rand rsrc_kind e kind;

}

pool[2] rsrc_obj rsrc_pool;
bind rsrc_pool *;

action do_something {
share rsrc_obj my rsrc_inst;
constraint my_rsrc_inst.kind 1= A;

}

action do_something_else {
lock rsrc_obj my_rsrc_inst;

}

action test {

activity {
parallel {
do do_something_al with { my_rsrc_inst.kind
do do_something_al with { my_rsrc_inst.kind
do do_something_else;

I
O w

W -

}
}

Example 104—DSL: Randomizing resource object attributes

Copyright © 2017 Accellera. All rights reserved. 123
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

class top : public component {

PSS_CTOR(top, component);

class rsrc_kind_e : public enumeration
PSS_ENUM(rsrc_kind_e, enumeration, A, B, C, D);

}:

type_decl<rsrc_kind_e> rsrc_kind_e_decl;

class rsrc_obj : public resource {
PSS_CTOR(rsrc_obj, resource);
rand_attr<rsrc_kind_e> kind {"kind"};

};

type_decl<rsrc_obj> rsrc_obj _decl;

pool<rsrc_obj> rsrc_pool {"rsrc_pool", 2};

bind bl {rsrc_pool};

class do_something : public action {
PSS_CTOR(do_something,action);
share<rsrc_obj> my_rsrc_inst {"my_rsrc_inst"};
constraint ¢ { my_rsrc_inst->kind != rsrc_kind_e::A };

}:

type_decl<do_something> do_something_decl;

class do_something_else : public action {
PSS_CTOR(do_something_else,action);
lock<rsrc_obj> my_rsrc_inst {"my_rsrc_inst"};

}:

type_decl<do_something_else> do_something_else_decl;

class test : public action {
PSS_CTOR(test,action);
action_handle<do_something> al{"al"}, a2{"a2"};
action_handle<do_something_else> a3{"a3"};
activity act {

parallel {

al.with (al->my_rsrc_inst->kind != rsrc_kind_e::B),
a2.with (a2->my_rsrc_inst->kind = rsrc_kind_e::C),
a3
}
}:
};
type_decl<test> test_decl;

}:
type_decl<top> top_decl;

Example 105—C++: Randomizing resource object attributes

13.3.4 Randomization of component assignment

When an action is randomized, its association with a component instance is determined. The built-in
attribute comp is assigned a reference to the selected component instance. The assignment needs to satisfy
constraints where comp attributes occur (see 11.6). Furthermore, the assignment of an action’s comp
attribute corresponds to the pools in which its inputs, outputs, and resources reside. If action a is assigned
resource instance I, r is taken out the pool bound to a’s resource reference field in the context of the
component instance assigned to a. If action a outputs a flow object which action b inputs, both output and
input reference fields shall be bound to the same pool under a’s component and b’s component respectively.
See 11.7 for more on pool binding.

124 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

13.3.5 Random value selection order

A PSS processing tool conceptually assigns values to sub-action fields of the action in the order they are
encountered in the activity. On entry into an activity, the value of plain-data fields qualified with action
and rand sub-fields of action-type fields are considered to be undefined.

Example 106 and Example 107 show a simple activity with three action-type fields (a, b, ¢). A PSS
processing tool might assign a.val=2, b_.val=4, and c.val=7 on a given execution.

action A {
rand bit[3:0] val;
}

action my_action {
A a, b, c;

constraint abc_c {
a.val < b.val;
b.val < c.val;

}

activity {
a;
b;
C;

by

}

Example 106—DSL: Activity with random fields

class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> val {"val", width(3,0)};
};
type_decl<A> A decl;
class my_action : public action {
PSS_CTOR(my_action, action);
action_handle<A> a {"a"}, b {"b"}, c {"'c"};
constraint abc_c { "abc_c",
a->val < b->val,
b->val < c->val
}:
activity act {
a,
b,
c
};
}:

type_decl<my_action> my_action_decl;
Example 107—C++: Activity with random fields

13.3.6 Loops and random value selection

A loop defines a traversal region. Random attribute fields and /O fields of sub-actions, and, similarly,
action-qualified fields, are considered to have an undefined value upon each entry to the loop, allowing the

Copyright © 2017 Accellera. All rights reserved. 125
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

1 PSS processing tool to freely select values for the fields according to the active constraints and resource
requirements.

Example 108 and Example 109 show an example of a root action (my_action) with sub-action fields and
5 an activity containing a loop. A value for a.val is selected, then two sets of values for b_val, c.val,

10

15

20

25

30

35

40

45

50

55

and d.val are selected.

action A {
rand bit[3:0] val;
}

action my_action {
A a, b, c, d;

constraint abc_c {
a.val < b.val;
b.val < c.val;
c.val < d.val;

}
activity {
a;
repeat (2) {
b;
(o3¢
d;
}
}
}
Example 108—DSL.: Activity with random fields in a loop
126 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

class A

}:

a->val
b->val
c->val
};
activity
a,
repeat

b,
c,

}
}
}:
¥

: public action {
PSS_CTOR(A, action);
rand_attr<bit> val {"val", width(3,0)};

type_decl<A> A decl;

class my_action : public action {
PSS_CTOR(my_action, action);
action_handle<A> a {"a"}, b {"b"}, c {"c"}, d{"d"};
constraint abc_c { "abc_c",

< b->val,
< c->val,
< d->val

act {

{2,

sequence {

type_decl<my_action> my_action_decl;

Example 109—C++: Activity with random fields in a loop

The following breakout shows valid values that could be selected here.

Repetition a.val b.val c.val d.val

1 5 6 7 8
2 5 7 8 9

13.3.7 Relationship lookahead

Values for random fields in an activity are selected and assigned as the fields are traversed. When selecting
a value for a random field, a PSS processing tool shall take into account both the explicit constraints on the

field and the implied constraints introduced by constraints on those fields traversed during the remainder of

the activity traversal (including those introduced by inferred actions, binding, and scheduling). This rule is
illustrated by Example 110 and Example 111.

13.3.7.1 Example 1

Example 110 and Example 111 show a simple struct with three random attribute fields and constraints
between the fields. When an instance of this struct is randomized, values for all the random attribute fields
are selected at the same time.

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

127

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

struct abc_s {
rand bit [0..15] a val, b_val, c_val;

constraint {
a_val < b_val;
b_val < c_val;

}

}

Example 110—DSL.: Struct with random fields

class abc_s : public structure {
PSS_CTOR(abc_s,structure);
rand_attr<bit> a_val{"'a val", range<bit>(0,15)},
b_val{"b_val", range<bit>(0,15)},
c_val{"c_val™, range<bit>(0,15)};
constraint ¢ {
a val < b_val,
b_val < c_val
}:
}:

type_decl<abc_s> abc_s_decl;

Example 111—C++: Struct with random fields

13.3.7.2 Example 2

Example 112 and Example 113 show a root action (my_action) with three sub-action fields and an
activity that traverses these sub-action fields. It is important that the random-value selection behavior of this
activity and the struct shown in Example 110 and Example 111 are the same. If a value for a.val is
selected without knowing the relationship between a.val and b.val, the tool could select a.val=15.
When a.val=15, there is no legal value for b.val, since b.val needs to be greater than a.val.

a) When selecting a value for a.val, a PSS processing tool needs to consider the following.

1) a.val isinside 0. .15, due to its domain.
2) b.val isinside 0. .15, due to its domain.
3) c.valisinside 0. .15, due to its domain.
4) a.val < b.val.
5) b.val < c.val.

This restricts the legal values ofa.val to 0. .13.

b) When selecting a value for b.val, a PSS processing tool needs to consider the following:

1) The value selected for a.val.

2) b.valisinside 0. .15, due to its domain.
3) c.valisinside O..15. due to its domain.
4) a.val < b.val.

5) b.val < c.val.

128

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

action A {
rand bit[3:0] val;
}

action my_action {
A a, b, c;

constraint abc_c {
a.val < b.val;
b.val < c.val;

¥

activity {
a;
b;
C;

b

¥

Example 112—DSL.: Activity with random fields

class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> val {"val", width(3,0)};
}:
type_decl<A> A decl;
class my_action : public action {
PSS_CTOR(my_action, action);
action_handle<A> a {"a"}, b {"b"}, c {"c"};
constraint abc_c { "abc_c",
a->val < b->val,
b->val < c->val
}:
activity act {
a,
b,
c
}:
}:

type_decl<my_action> my_action_decl;

Example 113—C++: Activity with random fields

13.3.8 Lookahead and sub-actions

Lookahead shall be performed across traversal of sub-action fields and needs to comprehend the
relationships between action attribute fields.

Example 114 and Example 115 show an action named sub that has three sub-action fields of type A, with
constraint relationships between those field values. A top-level action has a sub-action field of type A and
type sub, with a constraint between these two action-type fields. When selecting a value for the
top_action.v.val random attribute field, a PSS processing tool needs to consider the following:

— top_action.sl.a.val == top_action.v.val

— top_action.sl.a.val < top_action.sl.b.val

Copyright © 2017 Accellera. All rights reserved. 129
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

Portable Test and Stimulus

This implies top-v.val needs to be less than 14 to satisfy the top_action.sl.a.val <
top_action.sl.b.val constraint.

component top {

action A {
rand bit[3:0] val;
}

action sub {
A a, b, c;

constraint abc_c {
a.val < b.val;
b.val < c.val;

}

activity {
a;
b;
c,
}
}

action top_action {
A v;
sub s1;

constraint c {

sl.a.val == v.val;
}
activity {

'

sl;
}

130

Example 114—DSL: Sub-activity traversal

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

class top : public component {
PSS_CTOR(top, component);
class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> val {"val", width(3,0)};
};
type_decl<A> A decl;
class sub : public action {
PSS_CTOR(sub, action);
action_handle<A> a {"a"}, b {"b"}, c {"c"};
constraint abc_c { "abc_c",
a->val < b->val,
b->val < c->val
};
activity act {
a,
b,
c
};
};
type_decl<sub> sub_decl;
class top_action : public action {
PSS_CTOR(top_action,action);
action_handle<A> v;
action_handle<sub> s1;
constraint ¢ { "c",

sl->a->val == v->val
}:
activity act {

Vv,

sl
};

};
type_decl<top_action> top_action_decl;

}:
type_decl<top> top_decl;

Example 115—C++: Sub-activity traversal

13.3.9 Lookahead and dynamic constraints

Dynamic constraints introduce traversal-dependent constraints. A PSS processing tool needs to account for
these additional constraints when making random attribute field value selections. A dynamic constraint shall
hold for the entire activity branch on which it is referenced, as well to the remainder of the activity.

Example 116 and Example 117 show an activity with two dynamic constraints which are mutually
exclusive. If the first branch is selected, b.val <= 5 and b.val < a.val. If the second branch is
selected, b.val <= 7and b.val > a.val. A PSS processing tool needs to select a value for a.val
such that a legal value for b.val also exists (presuming this is possible).

Given the dynamic constraints, legal value ranges for a.val are 1. .15 for the first branch and O. .6 for
the second branch.

Copyright © 2017 Accellera. All rights reserved. 131
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

action A {
rand bit[3:0] val;
}

action dyn {
A a, b;

dynamic constraint dl {
b.val < a.val;
b.val <= 5;

}

dynamic constraint d2 {
b.val > a.val;
b.val <= 7;

}

activity {
a,;
select {
di;
dz2;
}
b;

132

Example 116—DSL.: Activity with dynamic constraints

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

class A : public action {
PSS_CTOR(A, action);
rand_attr<bit> val {"val", width(3,0)};
};
type_decl<A> A decl;
class dyn : public action {
PSS_CTOR(dyn, action);
action_handle<A> a {"a"}, b {"b"};
dynamic_constraint d1 { ""d1",
b->val < a->val,
b->val <= 5
}:
dynamic_constraint d2 { "'d2",
b->val > a->val,
b->val <= 7
};
activity act {
a,
select {
di,
d2

T,
b
¥

}:
type_decl<dyn> dyn_decl;

Example 117—C++: Activity with dynamic constraints

13.3.10 pre_solve and post_solve exec blocks

The pre_solve and post_solve exec blocks enable external code to participate in the solve process.
pre_solve and post_solve exec blocks may appear in struct and action type declarations. Statements
in pre_solve blocks are used to set non-random attribute fields that are subsequently read by the solver
during the solve process. Statements in pre_solve blocks can read the values of non-random attribute
fields and their non-random children. Statements in pre_solve blocks cannot read values of random
fields or their children, since their values have not yet been set. Statements in post_solve blocks are
evaluated after the solver has resolved values for random attribute fields and are used to set the values for
non-random attribute fields based on randomly-selected values.

The execution order of pre_solve and post_solve exec blocks corresponds to the order random
attribute fields are assigned by the solver. The ordering rules are as follows.

a)

b)

d)

Order within a compound activity is top-down—both the pre_solve and post_solve exec
blocks of a containing action are executed before any of its sub-actions are traversed, and, hence,
before the pre_solve and post_solve of its sub-actions.

Order between actions follows their relative scheduling in the scenario: if action a; is scheduled
before a,, a;’s pre_solve and post_solve blocks, if any, are called before that of a,.

Order for flow objects (instances of struct types declared with a buffer, stream, or state mod-
ifier) follows the order of their flow in the scenario: a flow object’s pre_solve or post_solve
exec block is called after the corresponding exec block of its outputting action and before that of its
inputting action(s).

A resource object’s pre_solve or post_solve exec block is called before the corresponding
exec block of all actions referencing it, regardless of their use mode (lock or shared).

Copyright © 2017 Accellera. All rights reserved. 133
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

e) Order within a compound data type (nested struct and array fields) is top-down —the exec block of
the containing instance is executed before that of the contained.

PSS does not specify the execution order in other cases. In particular, any relative order of execution for
sibling random Struct attributes is legitimate and so is any order for actions scheduled in parallel where
no flow-objects are exchanged between them.

See 17.1 for more information on the exec block construct.
13.3.10.1 Example 1

Example 118 and Example 119 show a top-level struct S2 that has rand and non-rand scalar fields, as well as
two fields of struct type S1. When an instance of S2 is randomized, the exec block of S2 is evaluated first,
but the execution for the two S1 instances can be in any order. The following is one such possible order.

a) S2.pre_solve

b) s2.sl 2.pre_solve

¢) s2.s1 1.pre_solve

d) assignment of attribute values
e) S2.post_solve

f) s2.sl1l 1.post _solve

g) s2.s1 2.post_solve

134 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

}

}

import bit[5:0] get_init val(Q);
import bit[5:0] get_exp_val(bit[5:0] stim_val);

struct S1 {

bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

exec pre_solve {
init_val = get_init val();

}

constraint rand_val_c {
rand_val <= init _val+10;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}

struct S2 {

bit[5:0] init_val;
rand bit[5:0] rand_val;
bit[5:0] exp_val;

rand S1 sl1 1, sl 2;

exec pre_solve {
init_val = get_init_ val(Q);

}

constraint rand_val_c {
rand_val > init_val;

}

exec post_solve {
exp_val = get_exp_val(rand_val);

}

Example 118—DSL: pre_solve/post_solve

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

135

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

import_func get_init_val {
"get_init_val”,
import_func::result<bit>(width(5,0)),
O
}:
import_func get_exp_val {
""get_exp_val",
import_func::result<bit>(width(5,0)),
{import_func::in<bit>("stim_val", width(5,0))}
};
class S1 : public structure {
PSS_CTOR(S1, structure);
attr<bit> init_val {"init_val", width(5,0)};
rand_attr<bit> rand_val {"rand_val", width(5,0)};
attr<bit> exp_val {"exp_val", width(5,0)};
exec pre_solve {
exec::pre_solve,
init_val = get_init_val(
}:
constraint rand_val_c {
rand_val <= init_val+10
};
exec post_solve {
exec: :post_solve,
exp_val = get_exp_val(rand_val)
}:
}:
type_decl<S1> S1 _decl;
class S2 : public structure {
public:
PSS_CTOR(S2, structure);
attr<bit> init_val {"init_val", width(5,0)};
rand_attr<bit> rand_val {"rand_val”, width(5,0)};
attr<bit> exp_val {"exp_val", width(5,0)};
rand_attr<S1> s1_1 {"s1 1"}, s1_2 {"sl1 2"};
exec pre_solve {
exec::pre_solve,
init_val = get_init_val()
}:
constraint rand_val_c {
rand_val > init_val
};
exec post_solve {
exec::post_solve,
exp_val = get_exp_val(rand_val)
}:
};
type_decl<S2> S2_decl;

Example 119—C++: pre_solve/post_solve

13.3.10.2 Example 2

Example 120 and Example 121 illustrate the relative order of execution for post_solve exec blocks of a
containing action test, two sub-actions: read and wr i te, and a buffer object exchanged between them.

The calls therein are executed as follows.

136

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard

b)
¢)
d)

test.post_solve
write._post_solve
mem_obj .post_solve
read.post_solve

June 14, 2017

buffer mem_obj {
exec post_solve { ... }

};

action write {
output mem_obj out_obj;
exec post_solve { ... }

};

action read {
input mem_obj in_obj;
exec post_solve { ... }

};

action test {
activity {
write wr;
read rd;
bind wr rd;
¥
exec post_solve { ... }

};

Example 120—DSL.: post_solve ordering between action and flow-objects

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

137

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

import_func do_something {
"'do_something™,
s
};
class mem_obj : public buffer {
PSS_CTOR(mem_obj, buffer);
exec post_solve {
exec::post_solve,
do_something()
};
}:
type_decl<mem_obj> mem_obj_decl;
class write : public action {
PSS_CTOR(write,action);
output<mem_obj> out_obj {"out_obj"};
exec post_solve {
exec::post_solve,
do_something()
}:
}:
type_decl<write> write_decl;
class read : public action {
PSS_CTOR(read,action);
input<mem_obj> in_obj {"in_obj"};
exec post_solve {
exec::post_solve,
do_something()
};
}:
type_decl<read> read_decl;
class test : public action {
PSS_CTOR(test, action);
action_handle<write> wr{"wr'};
action_handle<read> rd {"rd"};
bind bl { wr->out_obj, rd->in_obj};
activity act {
wr,
rd
}:
exec post_solve {
exec: :post_solve,
do_something(),
}:
}:
type_decl<test> test_decl;

Example 121—C++: post_solve ordering between action and flow-objects

13.3.11 Body blocks and sampling external data

exec body blocks can assign values to non-rand attribute fields. exec body blocks are executed at the end of
a leaf action execution. The impact of any field values modified by an exec body blocks is evaluated after
the entire exec body block has completed.

Example 122 and Example 123 show an exec body block that assigns to non-rand attribute fields. The
impact of the new values applied to y1 and y2 are evaluated against the constraint system after the exec

138 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

body block completes execution. Ii shall be illegal if the new values of Y1 and y2 conflict with other

attribute field values and constraints. Backtracking is not performed.

import bit[3:0] compute_vall(bit[3:0] v);
import bit[3:0] compute_val2(bit[3:0] v);
component pss_top {

action A {
rand bit[3:0] x;
bit[3:0] vy1, y2;

constraint assume_y c {
yl >= X && yl <= x+2;
y2 >= X && y2 <= X+3;

yl <= y2;
}

exec body {
yl = compute_vall(x);
y2 = compute_val2(x);
}
}
¥

Example 122—DSL: exec body block sampling external data

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

139

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

import_func compute_vall{''compute_vall",
import_func: :result<bit>(width(3,0)),
{import_func::in<bit>("v", width(3,0))}
};
import_func compute_val2{''compute_val2",
import_func: :result<bit>(width(3,0)),
{import_func::in<bit>("v", width(3,0))}
}:
class pss_top : public component {
public:
PSS_CTOR(pss_top, component);
class A : public action {
public:
PSS_CTOR(A, action);
rand_attr<bit> x {"x", width(3,0)};
attr<bit> y1{"y1", width(3,0)}, y2{"y2", width(3,0)};
constraint assume_y c {
yl >= X && yl <= x+2,
y2 >= X && y2 <= Xx+3,
yl <= y2
};
exec body {
exec: :body,
yl compute_vall(x),
y2 compute_val2(x)

};
};
type_decl<A> A decl;
};
type_decl<pss_top> pss_top_decl;

140

Example 123—C++: exec body block sampling external data

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard June 14, 2017

14. Coverage specification constructs

The legal state space for all non-trivial verification problems is very large. Coverage targets identify key
value ranges and value combinations that must occur in order to exercise key functionality. The coverspec
construct is used to specify these targets.

The coverage targets specified by the coverspec construct are more directly related to the test scenario being
created. As a consequence, the majority of these coverage targets would be considered coverage targets on
the “generation” side of stimulus. PSS also allows data to be sampled by calling external methods. Coverage
targets specified on data fields set by external methods can be related to the system state.

NOTE—Coverage is not supported in C++ in this PSS version.

14.1 coverspec declaration

Coverage goals are described using the coverspec construct. A coverspec declares an entity that specifies
coverage goals and the data items on which those goals are declared (see Syntax 88). An instance of a
coverspec is created to apply the coverage goals to specific data items (see 14.2).

Copyright © 2017 Accellera. All rights reserved. 141
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

14.1.1 DSL syntax

coverspec_declaration ::= coverspec identifier (coverspec_port { , coverspec_port })
{ { coverspec_body item } } [;]

coverspec_port ::= data_type identifier
coverspec_body_item ::=
coverspec_option
| coverspec_coverpoint
| coverspec_cross
| constraint_declaration
coverspec_option ::= option . identifier = constant_expression ;
coverspec_coverpoint ::=
coverpoint_identifier : coverpoint coverpoint_target_identifier
{ { coverspec_coverpoint_body item } }[;]
|5
coverspec_coverpoint_body_item ::=
coverspec_option
| coverspec_coverpoint_binspec
| ignore constraint
| illegal constraint
coverspec_coverpoint_binspec ::= bins identifier
bin_specification
| hierarchical id ;
ignore_constraint ::= ignore expression ;
illegal constraint ::= illegal expression ;
coverspec_cross ::=ID : cross coverpoint_identifier { , coverpoint_identifier }
{ { coverspec_cross_body item } }
5
coverspec_cross_body item ::=
coverspec_option
| ignore constraint

| illegal constraint

Syntax 88—DSL.: coverspec declaration

The following also apply.

A coverspec type can be declared in the package scope, struct scope, or action scope.

14.1.2 Examples

For examples of how to use a coverspec, see 14.2.2.

142

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

14.2 coverspec instantiation

A coverspec can be instantiated in a Struct scope or action scope. The coverspec instantiation specifies
the fields to which coverspec ports are bound (see Syntax 89).

14.2.1 DSL syntax

data_instantiation ::= identifier [(coverspec_portmap list)] [array dim]
[= constant_expression]

coverspec_portmap_list ::=[
coverspec_portmap { , coverspec_portmap }
| hierarchical id {, hierarchical id }]
coverspec_portmap ::=. identifier (hierarchical id)

array_dim ::= [constant_expression |

Syntax 89—DSL: coverspec instantiation

14.2.2 Examples

Example 124 shows a transaction struct that declares a coverspec in addition to random transaction
fields. The coverspec accepts a parameter of the transaction-struct type and declares a coverpoint
goal on the addr field of the transaction struct. The Struct creates an instance of the coverspec
and specifies itself (th1S) as the transaction instance to which to apply the coverage goals.

enum burst_type e { INCR, WRAP };

struct transaction {
rand bit[31:0] addr;
rand burst_type e burst_type;
rand bit[4:0] burst_len;

coverspec trans_cov(transaction t) {
addr_ranges : coverpoint t.addr {
bins low_addrs [0x00000000. .0x0000FFFF]/64;
}
}

// Coverspec instance
trans_cov tc(this);

Example 124—DSL.: coverspec declaration and instantiation

14.3 coverpoint goal

A coverpoint goal specifies a coverage goal on a scalar data item. Named bins (see 14.7) are used to identify
key values and value ranges.

Example 125 shows a coverpoint goal specified on the addr field. bins are used to specify 64 even
bins across the range 0X00000000-0x0000FFFF.

Copyright © 2017 Accellera. All rights reserved. 143
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

coverspec trans_cov(transaction t) {
addr_ranges : coverpoint t.addr {
bins low_addrs [0x00000000. .0x0000FFFF]/64;
}
}

Example 125—DSL: coverpoint goal

14.4 Referencing existing bin schemes

Bins and bin schemes (see 14.7) can be defined inside structs and activities. These bins and bin schemes can
be referenced from a coverpoint goal.

Example 126 shows a coverpoint bin that references an externally-defined set of bins. The effect is that
the addr_ranges coverpoint contains bins encompassing the value O and "h¥FfF, and the value rand
1-"hfff.

struct transaction {
rand bit[31:0] addr;

bins addr_edges_b [0] [1.."hffe] ["hfff];
}

coverspec trans_cov(transaction t) {
addr_ranges : coverpoint t.addr {
bins edge bins transaction.addr_edges_b;

}

}

Example 126—DSL: Referencing existing bins

14.5 cross goal

A cross goal specifies a coverage goal on two or more coverpoints that encompasses all combinations of the
bins (see 14.7) of the two coverpoints.

Example 127 shows a Cross goal between two coverpoints. The burst_type len cross goal
specifies all combinations of the bins of burst_type and burst_len.

coverspec trans_cov(transaction t) {
burst_type : coverpoint t.burst_type;

burst_len : coverpoint t.burst_len {
bins small_burst [1..4]:1;

}
burst_type_len : cross burst_type, burst_len;
}
Example 127—DSL.: cross goal
144 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

14.6 coverspec constraints

Constraints can be declared within a coverspec to customize the values and value combinations selected by
the specified goals. coverspec constraints apply globally in the coverspec in which they are declared.

Example 128 applies a constraint to coverage goals. In this case, the burst_type_len_cross cross
goal implies all 32 combinations of the burst_type and burst_len coverpoint bins. However, the
burst_type_len_c constraint specifies that when burst_type == WRAP, only three values of
burst_1len should be considered of interest.

enum burst_type e { INCR, WRAP };

struct transaction {
rand bit[31:0] addr;
rand burst_type_e burst_type;
rand bit[4:0] burst_len;

coverspec trans_cov(transaction t) {
constraint burst_type_len_c {
if (burst_type == WRAP) {
burst_len inside [1,2,4];
}
}

burst_type : coverpoint burst_type;
burst_len : coverpoint burst_len {
bins burst_len [1..16]:1;

}

burst_type_len_cross : cross burst_type, burst_len;

}

// Coverspec instance
trans_cov tc(this);

}

Example 128—DSL.: coverage constraint

14.6.1 Ignore constraint

Ignore constraints bucket coverage samples into an ignore bucket. An ignore constraint is an expression
over the coverpoint identifiers and other DSL variables. Coverpoint identifiers represent the values sampled
into the coverpoint bins. All samples that render the ignore expression true are placed in the ignore bucket.
Coverpoint identifiers have the type of the target variable that they monitor.

Ignore expressions can be added to coverpoints or crosses. Coverpoint ignore expressions place samples for
that coverpoint into an ignore bucket. Any crosses using the coverpoint also result in those samples being
placed in an ignore bucket. Ignore in a cross places the relevant samples to the cross in the crosses ignore
bucket and does not change the ignore buckets of the other crosses.

Example 1

coverspec trans_cov(transaction t) {
burst_type : coverpoint t.burst_type;

Copyright © 2017 Accellera. All rights reserved. 145
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

burst_len : coverpoint t_burst_len {
bins small_burst [1..4]:1;

}

burst_type_len : cross burst_type, burst_len {
ignore burst_type ? (burst_len < 2) : 1;

}
}

The following samples are placed in the ignore bucket.

burst_type burst_len

1 1 1

Example 2

coverspec trans_cov(transaction t) {
burst_type : coverpoint t_burst_type;
burst_len : coverpoint t.burst_len {
bins small_burst [1..4]:1;
ignore burst_len == 2;

}

burst_type_len : cross burst_type, burst_len {
ignore burst_type ? (burst_len < 2) : 1;

}
}

The following samples are placed in the ignore bucket.

burst_type burst len

1 1 1
2 0 2
3 1 2

14.6.2 lllegal constraint

Portable Test and Stimulus

Illegal constraints bucket coverage samples into an illegal bucket. An illegal constraint is an expression over
the coverpoints identifiers and other DSL variables. Coverpoint identifiers represent the values sampled into
the coverpoint bins. All samples that render the illegal expression true are placed in the illegal bucket.

Coverpoint identifiers have the type of the target variable that they monitor.

Illegal expressions can be added to coverpoints or crosses. Coverpoint illegal expressions place samples for
that coverpoint into an illegal bucket. Any crosses using the coverpoint also result in those samples being
placed in an illegal bucket. Illegal in a cross will place the relevant samples to the cross in the crosses illegal

bucket and does not change the illegal buckets of the other crosses.

146 Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

Example 1

coverspec trans_
: coverpoint t.burst_type;

burst_type
burst len : c

bins small
}

burst_type_le
illegal !'bu
¥
}

cov(transaction t) {

overpoint t.burst_len {

_burst [1..4]:1;

n : cross burst_type, burst_len {
rst_type ? (burst_len > 2) - 1;

The following samples are placed in the illegal bucket.

burst_type burst_len

1 0
2 0
Example 2

coverspec trans_
: coverpoint t.burst_type;

burst_type
burst_len : c
bins small

3

4

cov(transaction t) {

overpoint t._burst_len {

_burst [1..4]:1;

illegal burst_len == 2;

}
burst_type_le
illegal !'bu
3
by

n : cross burst_type, burst_len {
rst_type ? (burst_len > 2) - 1;

The following samples are placed in the illegal bucket.

burst_type burst_len

1 0
2 0
3 0
4 1

14.7 coverspec bins

3

4

June 14, 2017

The bins construct provides a way to declare a named set of values and value ranges associated with a

variable (see Syntax 90).

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

147

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

14.7.1 DSL syntax

bins_declaration ::= bins identifier [variable_identifier] bin_specification ;
bin_specification ::= bin_specifier { bin_specifier } [bin_wildcard]
bin_specifier ::=
explicit_bin_value

| explicit_bin_range

| bin_range divide

| bin_range size
explicit_bin_value ::= [constant |
explicit bin range ::= [constant .. constant |
bin_range divide ::= explicit_bin_range / constant
bin_range size ::= explicit bin range : constant

bin_wildcard ::=[* |

Syntax 90—DSL.: bins declaration

14.7.2 Examples

Example 129 declares a set of bins named Size_bins on the variable named S1ze. Value ranges can be
declared in several ways, as described in the remainder of this section.

coverspec size_cs (bit [0..4095] size) {
size_cp : coverpoint size {
bins size_bins size [1..1022] [1025..2046] [*]:
by
}

Example 129—DSL.: bins declaration

14.7.3 Explicit value and range grouping

Example 130 shows examples of value ([X |) and range grouping ([X .. y]). Individual bins are declared for
values 1, 2, and 3. Two value-range bins are declared that contain values 4. . 1022 and 1025. .4095.

coverspec size_cs (bit [0..4095] size) {
size_cp : coverpoint size {
bins size_bins [1] [2] [3] [4--1022] [1025..4095];
}
}

Example 130—DSL: Explicit value and range grouping

14.7.4 Value range divide operator (/)

The value range divide operator (/) splits a range of values into N value ranges. When the specified value
range does not evenly divide into N value ranges, the remaining values are placed in the final bin.

148 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

Example 131 shows how to use / to split value ranges. The value range O . . 1000 is split into 4 bins, while
the value range 1001 . . 4095 is split into 8 bins.

coverspec size_cs (bit [0..4095] size) {
size_cp : coverpoint size {
bins size_bins [0..1000]/4 [1001..4095]/8;
}

}

Example 131—DSL: Defining bins with the divide operator

14.7.5 Value range size operator (:)

The value range size operator (:) splits a range of values into ranges of size N. When the specified value
range does not split evenly into bins of size N, the final bin gets the remaining values (and will be smaller
than N).

Example 132 shows how to use : to define bins. The value range 0. . 1000 is split into bins of size 4, while
the value range 1001 . . 4095 is split into bins of size 8.

coverspec size_cs (bit [0..4095] size) {
size_cp : coverpoint size {
bins size bins [0..1000]:4 [1001..4095]:8;
}
}

Example 132—DSL.: Defining bins with the size operator

14.7.6 Wildcard bin (*)
The wildcard bin (*) collects all un-binned values in the domain of the target variable.

Example 133 shows how to use * to set up a wildcard bin. The values 0. .4000 are explicitly binned,
while the values 4001 . . 4095 are un-binned and, therefore, placed in the wildcard bin.

coverspec size_cs (bit [0..4095] size) {
size_cp : coverpoint size {
bins size _bins [0..1000] [1001..4000] [*]1:
}
}

Example 133—DSL: Using the wildcard bin

Copyright © 2017 Accellera. All rights reserved. 149
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

15. Type extension

Type extensions in PSS enable the decomposition of model code so as to maximize reuse and portability.
Model entities, actions, objects, components, and data-types, may have a number of properties, or aspects,
which are logically independent. Moreover, distinct concerns with respect to the same entities often need to
be developed independently. Later, the relevant definitions need to be integrated, or woven into one model,
for the purpose of generating tests.

Some typical examples of concerns that cut across multiple model entities are as follows.

— Implementation of actions and objects for, or in the context of, some specific target platform/lan-
guage.

— Model configuration of generic definitions for a specific device under test (DUT) / environment con-
figuration, affecting components and data types that are declared and instantiated elsewhere.

— Definition of functional element of a system that introduce new properties to common objects, which
define their inputs and outputs.

Such crosscutting concerns can be decoupled from one another by using type extensions and then
encapsulated as packages (see Clause 16).

15.1 Specifying type extensions

Composite and enumerated types in PSS are extensible. They are declared once, along with their initial
definition, and may later be extended any number of times, with new body items being introduced into their
scope. Items introduced in extensions may be of the same kinds and effect as those introduced in the initial
definition. The overall definition of any given type in a model is the sum-total of its definition statements—
the initial one along with any active extension. The semantics of extensions is that of weaving all those
statements into a single definition.

An extension statement explicitly specifies the kind of type being extended: struct, action, component, or
enum, which needs to agree with the type reference (see Syntax 91 or Syntax 92). It does not reiterate
modifiers of the type declaration, such as the object kind or base type. See also 16.1.

15.1.1 DSL syntax

extend stmt ::=
extend action type_identifier { { action body item } } [;]
| extend struct type_identifier { { struct body item } } [;]

| extend enum type_identifier { [enum_item {, enum item }]} [;]

| extend component type_identifier { { component body item } } [;]

Syntax 91—DSL.: type extension

15.1.2 C++ syntax

In C++, extension classes derives from a base class as normal, and then the extension is registered via the
appropriate extend_XxXXxx<> template class:

The corresponding C++ syntax for Syntax 91 is shown in Syntax 92.

150 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/// Extend a structure
template < class Foundation, class Extension>
class extend_structure {
public:
extend_structure();
15
/// Extend an action
template < class Foundation, class Extension>
class extend action {
public:
extend_action();
15
/// Extend a component
template < class Foundation, class Extension>
class extend component {
public:
extend_component();
15
/// Extend an enum
template < class Foundation, class Extension>
class extend _enum {
public:
extend_enum();

3

Syntax 92—C++: type extension

15.1.3 Examples

Examples of type extension are shown in Example 134 and Example 135.

Copyright © 2017 Accellera. All rights reserved.

This is an unapproved Accellera Standards Draft, subject to change.

151

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

enum config_modes_e {UNKNOWN, MODE_A=10, MODE_B=20};

component uart_c {
action configure {
rand config_modes_e mode;
constraint {mode != UNKNOWN;}
}
}

package additional_config_pkg {
extend enum config_modes_e {MODE_C=30, MODE_D=50}%}

extend action uart_c::configure {
constraint {mode != MODE_D;}
}
}

152

Example 134—DSL: Type extension

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard June 14, 2017

class config_modes_e : public enumeration {
PSS_ENUM(config_modes_e, enumeration, UNKNOWN, MODE_A=10, MODE_B=20);
}:
type_decl<config_modes_e> config_modes_e decl;
class uvart_c : public component {
public:
PSS_CTOR(uart_c, component);
class configure : public action {
PSS_CTOR(configure, action);
rand_attr<config_modes_e> mode{"'mode"};
constraint mode_c {mode != config_modes_e: :UNKNOWN};
}:
type_decl<configure> configure_decl;
}:
type_decl<uart_c> uart_c_decl;
class additional_config_pkg : public package
public:
PSS_CTOR(additional_config_pkg, package);
// declare an enum extension for base type config_modes_e
class config_modes_ext_e : public config_modes_e {
public:
PSS_ENUM(config_modes_ext_e, config_modes_e,MODE_C=30, MODE_D=50);
}:
// register enum extension
extend_enum<config_modes_e, config_modes_ext_e>
extend_enum_config_modes_ext_e;
// declare action extension for base type configure
class configure_ext : public uart_c::configure {

public:

PSS_CTOR(configure_ext, configure);

constraint mode_c_ext {mode != config_modes_ext_e::MODE_D};
}:

// register action extension
extend_action<uart_c::configure, configure_ext>
extend_action_configure_ext;
}:
type_decl<additional_config_pkg> additional_config_pkg_decl;

Example 135—C++: Type extension

15.1.4 Compound type extensions

Any kind of member declared in the context of the initial definition of a compound type can be declared in
the context of an extension, as per its entity category (struct, action, or component).

Named type members of any kind, fields in particular, may be introduced in the context of a type extension.
Names of fields introduced in an extension cannot conflict with those declared in the initial definition of the
type. They shall also be unique in the scope of their type within the package in which they are declared.
However, field names do not have to be unique across extensions of the same type in different packages.

Fields are always accessible within the scope of the package in which they are declared, shadowing fields
with same name declared in other packages. Members declared in a different package are accessible if the
declaring action is imported into the scope of the accessing package or component, given that the reference
is unique.

Copyright © 2017 Accellera. All rights reserved. 153
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017

In Example 136 and Example 137, an action type is initially defined in the context of a component and
later extended in a separate package. Ultimately the action type is used in a compound action of a
parent component. The component explicitly imports the package with the extension and can

therefore constrain the attribute introduced in the extension.

component mem_ops_c {
enum mem_block_tag_e {SYS_MEM, A_MEM, B_MEM, DDR};

buffer mem_buff s {
rand mem_block_tag_e mem_block;

}

pool mem_buff_s mem;
bind mem *;

action memcpy {
input mem_buff_s src_buff;
output mem_buff_s dst_buff;
}
}

package soc_config_pkg {
extend action mem_ops_c::memcpy {
rand int[l, 2, 4, 8] ta _width; // introducing new attribute

constraint { // layering additional constraint
src_buff.mem_block inside [SYS_MEM, A_MEM, DDR];
dst_buff.mem_block inside [SYS_MEM, A_MEM, DDR];
ta_width < 4 -> dst_buff.mem_block = A MEM;
}
}
}

component pss_top {
import soc_config_pkg::*;// explicitly importing the package grants
// access to types and type-members
mem_ops_Cc mem_ops;

action test {
mem_ops_c: :memcpy cpyl, cpy2;
constraint cpyl.ta_width == cpy2.ta_width;// constraining an
// attribute introduced In an extension

activity {

repeat (3) {

parallel { cpyl; cpy2; };
}

}

154

Example 136—DSL.: Action type extension

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

Portable Test and Stimulus

EA Standard

June 14, 2017

class mem_ops_c : public component {
public:
PSS_CTOR(mem_ops_c, component);
struct mem_block_tag e : public enumeration {
PSS_ENUM(mem_block_tag_e, enumeration, SYS_MEM, A_MEM, B_MEM, DDR);
}:
type_decl<mem_block_tag_e> mem_block_tag_e_decl;
struct mem_buff_s : public buffer {
PSS_CTOR(mem_buff_s,buffer);
rand_attr<mem_block_tag_e> mem_block {"mem_block"}; };
type_decl<mem_buff_s> mem_buff_s decl;
class memcpy : public action {
public:
PSS_CTOR(memcpy,action);
input<mem_buff_s> src_buff {'src_buff"};
output<mem_buff_s> dst_buff {"dst_buff'}; 3}
type_decl<memcpy> memcpy_decl; };
type_decl<mem_ops_c> mem_ops_c_decl;
class soc_config_pkg : public package {
public:
PSS_CTOR(soc_config_pkg, package);
class memcpy_ext : public mem_ops_c::memcpy {
public:
PSS_CTOR(memcpy_ext,mem_ops_c::memcpy);
using mem_block _tag e = mem_ops_c::mem_block_tag_e;
// introducing new attribute
rand_attr<int> ta_width {"ta_width", range<>(1)(2)(4)(8)};
constraint ¢ { // layering additional constraint
inside { src_buff->mem_block,
range<mem_block_tag_e>(mem_block_tag_e: :SYS_MEM)
(mem_block_tag_e: :A_MEM)
(mem_block_tag_e::DDR) },
inside { dst_buff->mem_block,
range<mem_block_tag_e>(mem_block tag_e::SYS_MEM)
(mem_block_tag_e: :A_MEM)
(mem_block_tag_e::DDR) },
if_then { ta_width < 4,
dst_buff->mem_block != mem_block tag_e::A MEM
L S
extend_action<memcpy_ext, mem_ops_c::memcpy> memcpy_ext_decl; };
type_decl<soc_config_pkg> soc_config_pkg_decl;
class pss_top : public component {
public:
PSS_CTOR(pss_top,component) ;
comp_inst<mem_ops_c> mem_ops {'mem_ops"};
class test : public action {
public:
PSS_CTOR(test,action);
action_handle<soc_config_pkg: :memcpy_ext> cpyl {"cpyl"},
cpy2 {"cpy2"};
constraint ¢ { cpyl->ta _width == cpy2->ta_width };
activity a {
repeat { 3,
parallel { cpyl, cpy2 } }; }; };
type_decl<test> test_decl; };
type_decl<pss_top> pss_top_decl;

Example 137—C++: Action type extension

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

15.1.5 Enum type extensions

Enumerated types can be extended in one or more package contexts, introducing new items to the domain of
all variables of that type. Each item in an enum type shall be associated with a numeric value that is unique
across the initial definition and all the extensions of the type. Item values are assigned according to the same
rules they would be if the items occurred all in the initial definition scope, according to the order of package
evaluations. An explicit conflicting value assignment shall be illegal.

Any enum item can be referenced within the package or component in which it was introduced. Outside
that scope, enum items can be references if the context package or component imports the respective scope.

In Example 138 and Example 139, an enum type is initially declared empty and later extended in two
independent packages. Ultimately items are referenced from a component that imports both
packages.

package mem_defs_pkg { // reusable definitions
enum mem_block_tag_e {}; // initially empty

buffer mem_buff s {
rand mem_block_tag_e mem_block;
}
}

package AB_subsystem pkg {
import mem_defs_pkg ::*;

extend enum mem_block_tag_e {A_MEM, B_MEM};
}

package soc_config_pkg {
import mem_defs_pkg ::*;

extend enum mem_block_tag_e {SYS_MEM, DDR};
}

extend component dma_c {
import AB_subsystem_pkg::*;
// explicitly importing the package grants
import soc_config_pkg::*; // access to enum items

action dma_test {

activity {
do dma_c::mem2mem_xFfer with {
src_buff.mem_block == A MEM;
dst_buff_.mem_block == DDR;
}:
}
}

Example 138—DSL: Enum type extensions

156 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard

June 14, 2017

class mem_defs_pkg : public package { // reusable definitions
public:
PSS_CTOR(mem_defs_pkg, package);
class mem_block _tag_e : public enumeration {
public:
PSS_ENUM(mem_block_tag_e, enumeration); // initially empty };
type_decl<mem_block_tag_e> mem_block_tag_e_decl;
class mem_buff_s : public buffer {
public:
PSS_CTOR(mem_buff_s, buffer);
rand_attr<mem_block_tag_e> mem_block {"mem_block"}; };
type_decl<mem_buff_s> mem_buff s decl; };
type_decl<mem_defs_pkg> mem_defs_pkg_decl;
class dma_c : public component {
public:
PSS_CTOR(dma_c, component);
class mem2mem_xfer : public action {
public:
PSS_CTOR(mem2mem_xfer, action);
rand_attr<mem_defs_pkg: :mem_buff_s> src_buff { "src_buff" };
rand_attr<mem_defs_pkg: :mem_buff_s> dst_buff { "dst_buff" }; };
type_decl<mem2mem_xfer> mem2mem_xfer_decl; };
type_decl<dma_c> dma_c_decl;
class AB_subsystem pkg : public package {
public:
PSS_CTOR(AB_subsystem_pkg, package);
class mem_block _tag_e_ext : public mem_defs_pkg::mem_block_tag e {
public:
PSS_ENUM(mem_block_tag_e_ext, mem_defs_pkg::mem_block tag_e, A_MEM,
B_MEM); };
extend_enum<mem_defs_pkg: :mem_block_tag_e, mem_block_tag_e_ ext>
mem_block_tag_e_ext; };
type_decl<AB_subsystem pkg> AB_subsystem_ pkg_decl;
class soc_config_pkg : public package {
public:
PSS_CTOR(soc_config_pkg, package);
class mem_block _tag_e_ext : public mem_defs_pkg::mem_block_tag e {
public:
PSS_ENUM(mem_block_tag_e ext, mem_defs_pkg::mem_block_ tag_e,
SYS_MEM, DDR); };
extend_enum<mem_defs_pkg::mem_block_tag_e, mem_block tag_e_ext>
mem_block_tag_e_ext _decl; };
type_decl<soc_config_pkg> soc_config_pkg_decl;
class dma_c_ext : public dma_c { public:
PSS_CTOR(dma_c_ext, dma_c);
class dma_test : public action {
public:
PSS_CTOR(dma_test, action);
action_handle<dma_c: :mem2mem_xfer> xfer;
activity a { xfer_.with(xfer->src_buff->mem_block ==
AB_subsystem_pkg::mem_block_tag_e ext::A MEM &&
xfer->dst_buff->mem_block ==
soc_config_pkg::mem _block _tag e _ext::DDR) }; };
type_decl<dma_test> dma_test _decl; };
extend_component<dma_c, dma_c_ext> dma_c_ext_decl;

Example 139—C++: Enum type extensions

Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

10

15

20

25

30

35

40

45

50

55

10

15

20

25

30

35

40

45

50

55

June 14, 2017 Portable Test and Stimulus

15.1.6 Ordering of type extensions

Multiple type extensions of the same type can be coded independently, and be integrated and weaved into a
single stimulus model, without interfering with or affecting the operation of one another. Methodology
should encourage making no assumptions on their relative order.

From a semantics point of view, order would be visible in the following cases.
— Invocation order of exec blocks of the same kind.
— Constraint override between constraint declarations with identical name.

— Numeric values associated with enum items that do not explicitly have a value assignment.

The initial definition always comes first in ordering of members. The order of extensions conforms to the
order in which packages are processed by a PSS implementation.

NOTE—This standard does not define specific ways in which a user can control the package-processing order.

15.2 Overriding types

The override block (see Syntax 93 or Syntax 94) allows type and instance-specific replacement of the
declared type of a field with some specified sub-type.

Overrides apply to action-fields, struct-attribute-fields, and component-instance-fields. In the presence of
override blocks in the model, the actual type that is instantiated under a field is determined according to the
following rules.

a) Walking from the field up the hierarchy from the contained entity to the containing entity, the appli-
cable override directive is the one highest up in the containment tree.

b) Within the same container, instance override takes precedence over type override.

c¢) For the same container and kind, an override introduced later in the code takes precedence.
Overrides do not apply to reference fields, namely fields with the modifiers input, output, lock, and
share. Component-type overrides under actions as well as action-type overrides under components are not

applicable to any fields; this is illegal.

15.2.1 DSL syntax

overrides_declaration ::= override { { override stmt } }
override stmt ::=
type override
| instance override
type override ::= type identifier with type_identifier ;

instance override ::= instance hierarchical id with identifier ;

Syntax 93—DSL: override declaration

15.2.2 C++ syntax

The corresponding C++ syntax for Syntax 93 is shown in Syntax 94.

158 Copyright © 2017 Accellera. All rights reserved.
This is an unapproved Accellera Standards Draft, subject to change.

EA Standard June 14, 2017

/Il Override a type
template < class Foundation, class Override>
class override_type {
public:
override_type();
15

Syntax 94—C++: override declaration

15.2.3 Examples

Example 140 and Example 141 combine type- and instance-specific overrides with type extension. Action
reg2axi_top specifies all axi_write_action instances